-
Notifications
You must be signed in to change notification settings - Fork 152
/
image_util.py
72 lines (68 loc) · 2.61 KB
/
image_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
from PIL import Image
from skimage import color
import torch
def gen_gray_color_pil(color_img_path):
'''
return: RGB and GRAY pillow image object
'''
rgb_img = Image.open(color_img_path)
if len(np.asarray(rgb_img).shape) == 2:
rgb_img = np.stack([np.asarray(rgb_img), np.asarray(rgb_img), np.asarray(rgb_img)], 2)
rgb_img = Image.fromarray(rgb_img)
gray_img = np.round(color.rgb2gray(np.asarray(rgb_img)) * 255.0).astype(np.uint8)
gray_img = np.stack([gray_img, gray_img, gray_img], -1)
gray_img = Image.fromarray(gray_img)
return rgb_img, gray_img
def read_to_pil(img_path):
'''
return: pillow image object HxWx3
'''
out_img = Image.open(img_path)
if len(np.asarray(out_img).shape) == 2:
out_img = np.stack([np.asarray(out_img), np.asarray(out_img), np.asarray(out_img)], 2)
out_img = Image.fromarray(out_img)
return out_img
def gen_maskrcnn_bbox_fromPred(pred_data_path, box_num_upbound=-1):
'''
## Arguments:
- pred_data_path: Detectron2 predict results
- box_num_upbound: object bounding boxes number. Default: -1 means use all the instances.
'''
pred_data = np.load(pred_data_path)
assert 'bbox' in pred_data
assert 'scores' in pred_data
pred_bbox = pred_data['bbox'].astype(np.int32)
if box_num_upbound > 0 and pred_bbox.shape[0] > box_num_upbound:
pred_scores = pred_data['scores']
index_mask = np.argsort(pred_scores, axis=0)[pred_scores.shape[0] - box_num_upbound: pred_scores.shape[0]]
pred_bbox = pred_bbox[index_mask]
# pred_scores = pred_data['scores']
# index_mask = pred_scores > 0.9
# pred_bbox = pred_bbox[index_mask].astype(np.int32)
return pred_bbox
def get_box_info(pred_bbox, original_shape, final_size):
assert len(pred_bbox) == 4
resize_startx = int(pred_bbox[0] / original_shape[0] * final_size)
resize_starty = int(pred_bbox[1] / original_shape[1] * final_size)
resize_endx = int(pred_bbox[2] / original_shape[0] * final_size)
resize_endy = int(pred_bbox[3] / original_shape[1] * final_size)
rh = resize_endx - resize_startx
rw = resize_endy - resize_starty
if rh < 1:
if final_size - resize_endx > 1:
resize_endx += 1
else:
resize_startx -= 1
rh = 1
if rw < 1:
if final_size - resize_endy > 1:
resize_endy += 1
else:
resize_starty -= 1
rw = 1
L_pad = resize_startx
R_pad = final_size - resize_endx
T_pad = resize_starty
B_pad = final_size - resize_endy
return [L_pad, R_pad, T_pad, B_pad, rh, rw]