-
Notifications
You must be signed in to change notification settings - Fork 268
/
Copy pathFitCurves.c
547 lines (468 loc) · 14.7 KB
/
FitCurves.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/*
An Algorithm for Automatically Fitting Digitized Curves
by Philip J. Schneider
from "Graphics Gems", Academic Press, 1990
*/
#define TESTMODE
/* fit_cubic.c */
/* Piecewise cubic fitting code */
#include "GraphicsGems.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
typedef Point2 *BezierCurve;
/* Forward declarations */
void FitCurve();
static void FitCubic();
static double *Reparameterize();
static double NewtonRaphsonRootFind();
static Point2 BezierII();
static double B0(), B1(), B2(), B3();
static Vector2 ComputeLeftTangent();
static Vector2 ComputeRightTangent();
static Vector2 ComputeCenterTangent();
static double ComputeMaxError();
static double *ChordLengthParameterize();
static BezierCurve GenerateBezier();
static Vector2 V2AddII();
static Vector2 V2ScaleIII();
static Vector2 V2SubII();
#define MAXPOINTS 1000 /* The most points you can have */
#ifdef TESTMODE
void DrawBezierCurve(int n, BezierCurve curve)
{
/* You'll have to write this yourself. */
}
/*
* main:
* Example of how to use the curve-fitting code. Given an array
* of points and a tolerance (squared error between points and
* fitted curve), the algorithm will generate a piecewise
* cubic Bezier representation that approximates the points.
* When a cubic is generated, the routine "DrawBezierCurve"
* is called, which outputs the Bezier curve just created
* (arguments are the degree and the control points, respectively).
* Users will have to implement this function themselves
* ascii output, etc.
*
*/
int main()
{
static Point2 d[7] = { /* Digitized points */
{ 0.0, 0.0 },
{ 0.0, 0.5 },
{ 1.1, 1.4 },
{ 2.1, 1.6 },
{ 3.2, 1.1 },
{ 4.0, 0.2 },
{ 4.0, 0.0 },
};
double error = 4.0; /* Squared error */
FitCurve(d, 7, error); /* Fit the Bezier curves */
}
#endif /* TESTMODE */
/*
* FitCurve :
* Fit a Bezier curve to a set of digitized points
*/
void FitCurve(d, nPts, error)
Point2 *d; /* Array of digitized points */
int nPts; /* Number of digitized points */
double error; /* User-defined error squared */
{
Vector2 tHat1, tHat2; /* Unit tangent vectors at endpoints */
tHat1 = ComputeLeftTangent(d, 0);
tHat2 = ComputeRightTangent(d, nPts - 1);
FitCubic(d, 0, nPts - 1, tHat1, tHat2, error);
}
/*
* FitCubic :
* Fit a Bezier curve to a (sub)set of digitized points
*/
static void FitCubic(d, first, last, tHat1, tHat2, error)
Point2 *d; /* Array of digitized points */
int first, last; /* Indices of first and last pts in region */
Vector2 tHat1, tHat2; /* Unit tangent vectors at endpoints */
double error; /* User-defined error squared */
{
BezierCurve bezCurve; /*Control points of fitted Bezier curve*/
double *u; /* Parameter values for point */
double *uPrime; /* Improved parameter values */
double maxError; /* Maximum fitting error */
int splitPoint; /* Point to split point set at */
int nPts; /* Number of points in subset */
double iterationError; /*Error below which you try iterating */
int maxIterations = 4; /* Max times to try iterating */
Vector2 tHatCenter; /* Unit tangent vector at splitPoint */
int i;
iterationError = error * 4.0; /* fixed issue 23 */
nPts = last - first + 1;
/* Use heuristic if region only has two points in it */
if (nPts == 2) {
double dist = V2DistanceBetween2Points(&d[last], &d[first]) / 3.0;
bezCurve = (Point2 *)malloc(4 * sizeof(Point2));
bezCurve[0] = d[first];
bezCurve[3] = d[last];
V2Add(&bezCurve[0], V2Scale(&tHat1, dist), &bezCurve[1]);
V2Add(&bezCurve[3], V2Scale(&tHat2, dist), &bezCurve[2]);
DrawBezierCurve(3, bezCurve);
free((void *)bezCurve);
return;
}
/* Parameterize points, and attempt to fit curve */
u = ChordLengthParameterize(d, first, last);
bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);
/* Find max deviation of points to fitted curve */
maxError = ComputeMaxError(d, first, last, bezCurve, u, &splitPoint);
if (maxError < error) {
DrawBezierCurve(3, bezCurve);
free((void *)u);
free((void *)bezCurve);
return;
}
/* If error not too large, try some reparameterization */
/* and iteration */
if (maxError < iterationError) {
for (i = 0; i < maxIterations; i++) {
uPrime = Reparameterize(d, first, last, u, bezCurve);
free((void *)bezCurve);
bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
maxError = ComputeMaxError(d, first, last,
bezCurve, uPrime, &splitPoint);
if (maxError < error) {
DrawBezierCurve(3, bezCurve);
free((void *)u);
free((void *)bezCurve);
free((void *)uPrime);
return;
}
free((void *)u);
u = uPrime;
}
}
/* Fitting failed -- split at max error point and fit recursively */
free((void *)u);
free((void *)bezCurve);
tHatCenter = ComputeCenterTangent(d, splitPoint);
FitCubic(d, first, splitPoint, tHat1, tHatCenter, error);
V2Negate(&tHatCenter);
FitCubic(d, splitPoint, last, tHatCenter, tHat2, error);
}
/*
* GenerateBezier :
* Use least-squares method to find Bezier control points for region.
*
*/
static BezierCurve GenerateBezier(d, first, last, uPrime, tHat1, tHat2)
Point2 *d; /* Array of digitized points */
int first, last; /* Indices defining region */
double *uPrime; /* Parameter values for region */
Vector2 tHat1, tHat2; /* Unit tangents at endpoints */
{
int i;
Vector2 A[MAXPOINTS][2]; /* Precomputed rhs for eqn */
int nPts; /* Number of pts in sub-curve */
double C[2][2]; /* Matrix C */
double X[2]; /* Matrix X */
double det_C0_C1, /* Determinants of matrices */
det_C0_X,
det_X_C1;
double alpha_l, /* Alpha values, left and right */
alpha_r;
Vector2 tmp; /* Utility variable */
BezierCurve bezCurve; /* RETURN bezier curve ctl pts */
double segLength;
double epsilon;
bezCurve = (Point2 *)malloc(4 * sizeof(Point2));
nPts = last - first + 1;
/* Compute the A's */
for (i = 0; i < nPts; i++) {
Vector2 v1, v2;
v1 = tHat1;
v2 = tHat2;
V2Scale(&v1, B1(uPrime[i]));
V2Scale(&v2, B2(uPrime[i]));
A[i][0] = v1;
A[i][1] = v2;
}
/* Create the C and X matrices */
C[0][0] = 0.0;
C[0][1] = 0.0;
C[1][0] = 0.0;
C[1][1] = 0.0;
X[0] = 0.0;
X[1] = 0.0;
for (i = 0; i < nPts; i++) {
C[0][0] += V2Dot(&A[i][0], &A[i][0]);
C[0][1] += V2Dot(&A[i][0], &A[i][1]);
/* C[1][0] += V2Dot(&A[i][0], &A[i][1]);*/
C[1][0] = C[0][1];
C[1][1] += V2Dot(&A[i][1], &A[i][1]);
tmp = V2SubII(d[first + i],
V2AddII(
V2ScaleIII(d[first], B0(uPrime[i])),
V2AddII(
V2ScaleIII(d[first], B1(uPrime[i])),
V2AddII(
V2ScaleIII(d[last], B2(uPrime[i])),
V2ScaleIII(d[last], B3(uPrime[i]))))));
X[0] += V2Dot(&A[i][0], &tmp);
X[1] += V2Dot(&A[i][1], &tmp);
}
/* Compute the determinants of C and X */
det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];
det_C0_X = C[0][0] * X[1] - C[1][0] * X[0];
det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1];
/* Finally, derive alpha values */
alpha_l = (det_C0_C1 == 0) ? 0.0 : det_X_C1 / det_C0_C1;
alpha_r = (det_C0_C1 == 0) ? 0.0 : det_C0_X / det_C0_C1;
/* If alpha negative, use the Wu/Barsky heuristic (see text) */
/* (if alpha is 0, you get coincident control points that lead to
* divide by zero in any subsequent NewtonRaphsonRootFind() call. */
segLength = V2DistanceBetween2Points(&d[last], &d[first]);
epsilon = 1.0e-6 * segLength;
if (alpha_l < epsilon || alpha_r < epsilon)
{
/* fall back on standard (probably inaccurate) formula, and subdivide further if needed. */
double dist = segLength / 3.0;
bezCurve[0] = d[first];
bezCurve[3] = d[last];
V2Add(&bezCurve[0], V2Scale(&tHat1, dist), &bezCurve[1]);
V2Add(&bezCurve[3], V2Scale(&tHat2, dist), &bezCurve[2]);
return (bezCurve);
}
/* First and last control points of the Bezier curve are */
/* positioned exactly at the first and last data points */
/* Control points 1 and 2 are positioned an alpha distance out */
/* on the tangent vectors, left and right, respectively */
bezCurve[0] = d[first];
bezCurve[3] = d[last];
V2Add(&bezCurve[0], V2Scale(&tHat1, alpha_l), &bezCurve[1]);
V2Add(&bezCurve[3], V2Scale(&tHat2, alpha_r), &bezCurve[2]);
return (bezCurve);
}
/*
* Reparameterize:
* Given set of points and their parameterization, try to find
* a better parameterization.
*
*/
static double *Reparameterize(d, first, last, u, bezCurve)
Point2 *d; /* Array of digitized points */
int first, last; /* Indices defining region */
double *u; /* Current parameter values */
BezierCurve bezCurve; /* Current fitted curve */
{
int nPts = last-first+1;
int i;
double *uPrime; /* New parameter values */
uPrime = (double *)malloc(nPts * sizeof(double));
for (i = first; i <= last; i++) {
uPrime[i-first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i-
first]);
}
return (uPrime);
}
/*
* NewtonRaphsonRootFind :
* Use Newton-Raphson iteration to find better root.
*/
static double NewtonRaphsonRootFind(Q, P, u)
BezierCurve Q; /* Current fitted curve */
Point2 P; /* Digitized point */
double u; /* Parameter value for "P" */
{
double numerator, denominator;
Point2 Q1[3], Q2[2]; /* Q' and Q'' */
Point2 Q_u, Q1_u, Q2_u; /*u evaluated at Q, Q', & Q'' */
double uPrime; /* Improved u */
int i;
/* Compute Q(u) */
Q_u = BezierII(3, Q, u);
/* Generate control vertices for Q' */
for (i = 0; i <= 2; i++) {
Q1[i].x = (Q[i+1].x - Q[i].x) * 3.0;
Q1[i].y = (Q[i+1].y - Q[i].y) * 3.0;
}
/* Generate control vertices for Q'' */
for (i = 0; i <= 1; i++) {
Q2[i].x = (Q1[i+1].x - Q1[i].x) * 2.0;
Q2[i].y = (Q1[i+1].y - Q1[i].y) * 2.0;
}
/* Compute Q'(u) and Q''(u) */
Q1_u = BezierII(2, Q1, u);
Q2_u = BezierII(1, Q2, u);
/* Compute f(u)/f'(u) */
numerator = (Q_u.x - P.x) * (Q1_u.x) + (Q_u.y - P.y) * (Q1_u.y);
denominator = (Q1_u.x) * (Q1_u.x) + (Q1_u.y) * (Q1_u.y) +
(Q_u.x - P.x) * (Q2_u.x) + (Q_u.y - P.y) * (Q2_u.y);
if (denominator == 0.0f) return u;
/* u = u - f(u)/f'(u) */
uPrime = u - (numerator/denominator);
return (uPrime);
}
/*
* Bezier :
* Evaluate a Bezier curve at a particular parameter value
*
*/
static Point2 BezierII(degree, V, t)
int degree; /* The degree of the bezier curve */
Point2 *V; /* Array of control points */
double t; /* Parametric value to find point for */
{
int i, j;
Point2 Q; /* Point on curve at parameter t */
Point2 *Vtemp; /* Local copy of control points */
/* Copy array */
Vtemp = (Point2 *)malloc((unsigned)((degree+1)
* sizeof (Point2)));
for (i = 0; i <= degree; i++) {
Vtemp[i] = V[i];
}
/* Triangle computation */
for (i = 1; i <= degree; i++) {
for (j = 0; j <= degree-i; j++) {
Vtemp[j].x = (1.0 - t) * Vtemp[j].x + t * Vtemp[j+1].x;
Vtemp[j].y = (1.0 - t) * Vtemp[j].y + t * Vtemp[j+1].y;
}
}
Q = Vtemp[0];
free((void *)Vtemp);
return Q;
}
/*
* B0, B1, B2, B3 :
* Bezier multipliers
*/
static double B0(u)
double u;
{
double tmp = 1.0 - u;
return (tmp * tmp * tmp);
}
static double B1(u)
double u;
{
double tmp = 1.0 - u;
return (3 * u * (tmp * tmp));
}
static double B2(u)
double u;
{
double tmp = 1.0 - u;
return (3 * u * u * tmp);
}
static double B3(u)
double u;
{
return (u * u * u);
}
/*
* ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent :
*Approximate unit tangents at endpoints and "center" of digitized curve
*/
static Vector2 ComputeLeftTangent(d, end)
Point2 *d; /* Digitized points*/
int end; /* Index to "left" end of region */
{
Vector2 tHat1;
tHat1 = V2SubII(d[end+1], d[end]);
tHat1 = *V2Normalize(&tHat1);
return tHat1;
}
static Vector2 ComputeRightTangent(d, end)
Point2 *d; /* Digitized points */
int end; /* Index to "right" end of region */
{
Vector2 tHat2;
tHat2 = V2SubII(d[end-1], d[end]);
tHat2 = *V2Normalize(&tHat2);
return tHat2;
}
static Vector2 ComputeCenterTangent(d, center)
Point2 *d; /* Digitized points */
int center; /* Index to point inside region */
{
Vector2 V1, V2, tHatCenter;
V1 = V2SubII(d[center-1], d[center]);
V2 = V2SubII(d[center], d[center+1]);
tHatCenter.x = (V1.x + V2.x)/2.0;
tHatCenter.y = (V1.y + V2.y)/2.0;
tHatCenter = *V2Normalize(&tHatCenter);
return tHatCenter;
}
/*
* ChordLengthParameterize :
* Assign parameter values to digitized points
* using relative distances between points.
*/
static double *ChordLengthParameterize(d, first, last)
Point2 *d; /* Array of digitized points */
int first, last; /* Indices defining region */
{
int i;
double *u; /* Parameterization */
u = (double *)malloc((unsigned)(last-first+1) * sizeof(double));
u[0] = 0.0;
for (i = first+1; i <= last; i++) {
u[i-first] = u[i-first-1] +
V2DistanceBetween2Points(&d[i], &d[i-1]);
}
for (i = first + 1; i <= last; i++) {
u[i-first] = u[i-first] / u[last-first];
}
return(u);
}
/*
* ComputeMaxError :
* Find the maximum squared distance of digitized points
* to fitted curve.
*/
static double ComputeMaxError(d, first, last, bezCurve, u, splitPoint)
Point2 *d; /* Array of digitized points */
int first, last; /* Indices defining region */
BezierCurve bezCurve; /* Fitted Bezier curve */
double *u; /* Parameterization of points */
int *splitPoint; /* Point of maximum error */
{
int i;
double maxDist; /* Maximum error */
double dist; /* Current error */
Point2 P; /* Point on curve */
Vector2 v; /* Vector from point to curve */
*splitPoint = (last - first + 1)/2;
maxDist = 0.0;
for (i = first + 1; i < last; i++) {
P = BezierII(3, bezCurve, u[i-first]);
v = V2SubII(P, d[i]);
dist = V2SquaredLength(&v);
if (dist >= maxDist) {
maxDist = dist;
*splitPoint = i;
}
}
return (maxDist);
}
static Vector2 V2AddII(a, b)
Vector2 a, b;
{
Vector2 c;
c.x = a.x + b.x; c.y = a.y + b.y;
return (c);
}
static Vector2 V2ScaleIII(v, s)
Vector2 v;
double s;
{
Vector2 result;
result.x = v.x * s; result.y = v.y * s;
return (result);
}
static Vector2 V2SubII(a, b)
Vector2 a, b;
{
Vector2 c;
c.x = a.x - b.x; c.y = a.y - b.y;
return (c);
}