diff --git a/README.md b/README.md
index 536bd0f..d98f24c 100644
--- a/README.md
+++ b/README.md
@@ -1,2 +1,7 @@
-# resonatorNMI
-Example notebook of resonator network for scene understanding
+# Resonator NMI
+
+Example notebook of resonator network for scene understanding. This demo is for the paper:
+
+Renner, A., Supic, L., Danielescu, A., Indiveri, G., Olshausen, B.A., Sandamirskaya, Y., Sommer, F.T., Frady, E.P. (2024). Neuromorphic Visual Scene Understanding with Resonator Networks. Nature Machine Intelligence.
+
+
diff --git a/colormaps.py b/colormaps.py
new file mode 100644
index 0000000..91c5654
--- /dev/null
+++ b/colormaps.py
@@ -0,0 +1,1060 @@
+
+# New matplotlib colormaps by Nathaniel J. Smith, Stefan van der Walt,
+# and (in the case of viridis) Eric Firing.
+#
+# This file and the colormaps in it are released under the CC0 license /
+# public domain dedication. We would appreciate credit if you use or
+# redistribute these colormaps, but do not impose any legal restrictions.
+#
+# To the extent possible under law, the persons who associated CC0 with
+# mpl-colormaps have waived all copyright and related or neighboring rights
+# to mpl-colormaps.
+#
+# You should have received a copy of the CC0 legalcode along with this
+# work. If not, see .
+
+__all__ = ['magma', 'inferno', 'plasma', 'viridis']
+
+_magma_data = [[0.001462, 0.000466, 0.013866],
+ [0.002258, 0.001295, 0.018331],
+ [0.003279, 0.002305, 0.023708],
+ [0.004512, 0.003490, 0.029965],
+ [0.005950, 0.004843, 0.037130],
+ [0.007588, 0.006356, 0.044973],
+ [0.009426, 0.008022, 0.052844],
+ [0.011465, 0.009828, 0.060750],
+ [0.013708, 0.011771, 0.068667],
+ [0.016156, 0.013840, 0.076603],
+ [0.018815, 0.016026, 0.084584],
+ [0.021692, 0.018320, 0.092610],
+ [0.024792, 0.020715, 0.100676],
+ [0.028123, 0.023201, 0.108787],
+ [0.031696, 0.025765, 0.116965],
+ [0.035520, 0.028397, 0.125209],
+ [0.039608, 0.031090, 0.133515],
+ [0.043830, 0.033830, 0.141886],
+ [0.048062, 0.036607, 0.150327],
+ [0.052320, 0.039407, 0.158841],
+ [0.056615, 0.042160, 0.167446],
+ [0.060949, 0.044794, 0.176129],
+ [0.065330, 0.047318, 0.184892],
+ [0.069764, 0.049726, 0.193735],
+ [0.074257, 0.052017, 0.202660],
+ [0.078815, 0.054184, 0.211667],
+ [0.083446, 0.056225, 0.220755],
+ [0.088155, 0.058133, 0.229922],
+ [0.092949, 0.059904, 0.239164],
+ [0.097833, 0.061531, 0.248477],
+ [0.102815, 0.063010, 0.257854],
+ [0.107899, 0.064335, 0.267289],
+ [0.113094, 0.065492, 0.276784],
+ [0.118405, 0.066479, 0.286321],
+ [0.123833, 0.067295, 0.295879],
+ [0.129380, 0.067935, 0.305443],
+ [0.135053, 0.068391, 0.315000],
+ [0.140858, 0.068654, 0.324538],
+ [0.146785, 0.068738, 0.334011],
+ [0.152839, 0.068637, 0.343404],
+ [0.159018, 0.068354, 0.352688],
+ [0.165308, 0.067911, 0.361816],
+ [0.171713, 0.067305, 0.370771],
+ [0.178212, 0.066576, 0.379497],
+ [0.184801, 0.065732, 0.387973],
+ [0.191460, 0.064818, 0.396152],
+ [0.198177, 0.063862, 0.404009],
+ [0.204935, 0.062907, 0.411514],
+ [0.211718, 0.061992, 0.418647],
+ [0.218512, 0.061158, 0.425392],
+ [0.225302, 0.060445, 0.431742],
+ [0.232077, 0.059889, 0.437695],
+ [0.238826, 0.059517, 0.443256],
+ [0.245543, 0.059352, 0.448436],
+ [0.252220, 0.059415, 0.453248],
+ [0.258857, 0.059706, 0.457710],
+ [0.265447, 0.060237, 0.461840],
+ [0.271994, 0.060994, 0.465660],
+ [0.278493, 0.061978, 0.469190],
+ [0.284951, 0.063168, 0.472451],
+ [0.291366, 0.064553, 0.475462],
+ [0.297740, 0.066117, 0.478243],
+ [0.304081, 0.067835, 0.480812],
+ [0.310382, 0.069702, 0.483186],
+ [0.316654, 0.071690, 0.485380],
+ [0.322899, 0.073782, 0.487408],
+ [0.329114, 0.075972, 0.489287],
+ [0.335308, 0.078236, 0.491024],
+ [0.341482, 0.080564, 0.492631],
+ [0.347636, 0.082946, 0.494121],
+ [0.353773, 0.085373, 0.495501],
+ [0.359898, 0.087831, 0.496778],
+ [0.366012, 0.090314, 0.497960],
+ [0.372116, 0.092816, 0.499053],
+ [0.378211, 0.095332, 0.500067],
+ [0.384299, 0.097855, 0.501002],
+ [0.390384, 0.100379, 0.501864],
+ [0.396467, 0.102902, 0.502658],
+ [0.402548, 0.105420, 0.503386],
+ [0.408629, 0.107930, 0.504052],
+ [0.414709, 0.110431, 0.504662],
+ [0.420791, 0.112920, 0.505215],
+ [0.426877, 0.115395, 0.505714],
+ [0.432967, 0.117855, 0.506160],
+ [0.439062, 0.120298, 0.506555],
+ [0.445163, 0.122724, 0.506901],
+ [0.451271, 0.125132, 0.507198],
+ [0.457386, 0.127522, 0.507448],
+ [0.463508, 0.129893, 0.507652],
+ [0.469640, 0.132245, 0.507809],
+ [0.475780, 0.134577, 0.507921],
+ [0.481929, 0.136891, 0.507989],
+ [0.488088, 0.139186, 0.508011],
+ [0.494258, 0.141462, 0.507988],
+ [0.500438, 0.143719, 0.507920],
+ [0.506629, 0.145958, 0.507806],
+ [0.512831, 0.148179, 0.507648],
+ [0.519045, 0.150383, 0.507443],
+ [0.525270, 0.152569, 0.507192],
+ [0.531507, 0.154739, 0.506895],
+ [0.537755, 0.156894, 0.506551],
+ [0.544015, 0.159033, 0.506159],
+ [0.550287, 0.161158, 0.505719],
+ [0.556571, 0.163269, 0.505230],
+ [0.562866, 0.165368, 0.504692],
+ [0.569172, 0.167454, 0.504105],
+ [0.575490, 0.169530, 0.503466],
+ [0.581819, 0.171596, 0.502777],
+ [0.588158, 0.173652, 0.502035],
+ [0.594508, 0.175701, 0.501241],
+ [0.600868, 0.177743, 0.500394],
+ [0.607238, 0.179779, 0.499492],
+ [0.613617, 0.181811, 0.498536],
+ [0.620005, 0.183840, 0.497524],
+ [0.626401, 0.185867, 0.496456],
+ [0.632805, 0.187893, 0.495332],
+ [0.639216, 0.189921, 0.494150],
+ [0.645633, 0.191952, 0.492910],
+ [0.652056, 0.193986, 0.491611],
+ [0.658483, 0.196027, 0.490253],
+ [0.664915, 0.198075, 0.488836],
+ [0.671349, 0.200133, 0.487358],
+ [0.677786, 0.202203, 0.485819],
+ [0.684224, 0.204286, 0.484219],
+ [0.690661, 0.206384, 0.482558],
+ [0.697098, 0.208501, 0.480835],
+ [0.703532, 0.210638, 0.479049],
+ [0.709962, 0.212797, 0.477201],
+ [0.716387, 0.214982, 0.475290],
+ [0.722805, 0.217194, 0.473316],
+ [0.729216, 0.219437, 0.471279],
+ [0.735616, 0.221713, 0.469180],
+ [0.742004, 0.224025, 0.467018],
+ [0.748378, 0.226377, 0.464794],
+ [0.754737, 0.228772, 0.462509],
+ [0.761077, 0.231214, 0.460162],
+ [0.767398, 0.233705, 0.457755],
+ [0.773695, 0.236249, 0.455289],
+ [0.779968, 0.238851, 0.452765],
+ [0.786212, 0.241514, 0.450184],
+ [0.792427, 0.244242, 0.447543],
+ [0.798608, 0.247040, 0.444848],
+ [0.804752, 0.249911, 0.442102],
+ [0.810855, 0.252861, 0.439305],
+ [0.816914, 0.255895, 0.436461],
+ [0.822926, 0.259016, 0.433573],
+ [0.828886, 0.262229, 0.430644],
+ [0.834791, 0.265540, 0.427671],
+ [0.840636, 0.268953, 0.424666],
+ [0.846416, 0.272473, 0.421631],
+ [0.852126, 0.276106, 0.418573],
+ [0.857763, 0.279857, 0.415496],
+ [0.863320, 0.283729, 0.412403],
+ [0.868793, 0.287728, 0.409303],
+ [0.874176, 0.291859, 0.406205],
+ [0.879464, 0.296125, 0.403118],
+ [0.884651, 0.300530, 0.400047],
+ [0.889731, 0.305079, 0.397002],
+ [0.894700, 0.309773, 0.393995],
+ [0.899552, 0.314616, 0.391037],
+ [0.904281, 0.319610, 0.388137],
+ [0.908884, 0.324755, 0.385308],
+ [0.913354, 0.330052, 0.382563],
+ [0.917689, 0.335500, 0.379915],
+ [0.921884, 0.341098, 0.377376],
+ [0.925937, 0.346844, 0.374959],
+ [0.929845, 0.352734, 0.372677],
+ [0.933606, 0.358764, 0.370541],
+ [0.937221, 0.364929, 0.368567],
+ [0.940687, 0.371224, 0.366762],
+ [0.944006, 0.377643, 0.365136],
+ [0.947180, 0.384178, 0.363701],
+ [0.950210, 0.390820, 0.362468],
+ [0.953099, 0.397563, 0.361438],
+ [0.955849, 0.404400, 0.360619],
+ [0.958464, 0.411324, 0.360014],
+ [0.960949, 0.418323, 0.359630],
+ [0.963310, 0.425390, 0.359469],
+ [0.965549, 0.432519, 0.359529],
+ [0.967671, 0.439703, 0.359810],
+ [0.969680, 0.446936, 0.360311],
+ [0.971582, 0.454210, 0.361030],
+ [0.973381, 0.461520, 0.361965],
+ [0.975082, 0.468861, 0.363111],
+ [0.976690, 0.476226, 0.364466],
+ [0.978210, 0.483612, 0.366025],
+ [0.979645, 0.491014, 0.367783],
+ [0.981000, 0.498428, 0.369734],
+ [0.982279, 0.505851, 0.371874],
+ [0.983485, 0.513280, 0.374198],
+ [0.984622, 0.520713, 0.376698],
+ [0.985693, 0.528148, 0.379371],
+ [0.986700, 0.535582, 0.382210],
+ [0.987646, 0.543015, 0.385210],
+ [0.988533, 0.550446, 0.388365],
+ [0.989363, 0.557873, 0.391671],
+ [0.990138, 0.565296, 0.395122],
+ [0.990871, 0.572706, 0.398714],
+ [0.991558, 0.580107, 0.402441],
+ [0.992196, 0.587502, 0.406299],
+ [0.992785, 0.594891, 0.410283],
+ [0.993326, 0.602275, 0.414390],
+ [0.993834, 0.609644, 0.418613],
+ [0.994309, 0.616999, 0.422950],
+ [0.994738, 0.624350, 0.427397],
+ [0.995122, 0.631696, 0.431951],
+ [0.995480, 0.639027, 0.436607],
+ [0.995810, 0.646344, 0.441361],
+ [0.996096, 0.653659, 0.446213],
+ [0.996341, 0.660969, 0.451160],
+ [0.996580, 0.668256, 0.456192],
+ [0.996775, 0.675541, 0.461314],
+ [0.996925, 0.682828, 0.466526],
+ [0.997077, 0.690088, 0.471811],
+ [0.997186, 0.697349, 0.477182],
+ [0.997254, 0.704611, 0.482635],
+ [0.997325, 0.711848, 0.488154],
+ [0.997351, 0.719089, 0.493755],
+ [0.997351, 0.726324, 0.499428],
+ [0.997341, 0.733545, 0.505167],
+ [0.997285, 0.740772, 0.510983],
+ [0.997228, 0.747981, 0.516859],
+ [0.997138, 0.755190, 0.522806],
+ [0.997019, 0.762398, 0.528821],
+ [0.996898, 0.769591, 0.534892],
+ [0.996727, 0.776795, 0.541039],
+ [0.996571, 0.783977, 0.547233],
+ [0.996369, 0.791167, 0.553499],
+ [0.996162, 0.798348, 0.559820],
+ [0.995932, 0.805527, 0.566202],
+ [0.995680, 0.812706, 0.572645],
+ [0.995424, 0.819875, 0.579140],
+ [0.995131, 0.827052, 0.585701],
+ [0.994851, 0.834213, 0.592307],
+ [0.994524, 0.841387, 0.598983],
+ [0.994222, 0.848540, 0.605696],
+ [0.993866, 0.855711, 0.612482],
+ [0.993545, 0.862859, 0.619299],
+ [0.993170, 0.870024, 0.626189],
+ [0.992831, 0.877168, 0.633109],
+ [0.992440, 0.884330, 0.640099],
+ [0.992089, 0.891470, 0.647116],
+ [0.991688, 0.898627, 0.654202],
+ [0.991332, 0.905763, 0.661309],
+ [0.990930, 0.912915, 0.668481],
+ [0.990570, 0.920049, 0.675675],
+ [0.990175, 0.927196, 0.682926],
+ [0.989815, 0.934329, 0.690198],
+ [0.989434, 0.941470, 0.697519],
+ [0.989077, 0.948604, 0.704863],
+ [0.988717, 0.955742, 0.712242],
+ [0.988367, 0.962878, 0.719649],
+ [0.988033, 0.970012, 0.727077],
+ [0.987691, 0.977154, 0.734536],
+ [0.987387, 0.984288, 0.742002],
+ [0.987053, 0.991438, 0.749504]]
+
+_inferno_data = [[0.001462, 0.000466, 0.013866],
+ [0.002267, 0.001270, 0.018570],
+ [0.003299, 0.002249, 0.024239],
+ [0.004547, 0.003392, 0.030909],
+ [0.006006, 0.004692, 0.038558],
+ [0.007676, 0.006136, 0.046836],
+ [0.009561, 0.007713, 0.055143],
+ [0.011663, 0.009417, 0.063460],
+ [0.013995, 0.011225, 0.071862],
+ [0.016561, 0.013136, 0.080282],
+ [0.019373, 0.015133, 0.088767],
+ [0.022447, 0.017199, 0.097327],
+ [0.025793, 0.019331, 0.105930],
+ [0.029432, 0.021503, 0.114621],
+ [0.033385, 0.023702, 0.123397],
+ [0.037668, 0.025921, 0.132232],
+ [0.042253, 0.028139, 0.141141],
+ [0.046915, 0.030324, 0.150164],
+ [0.051644, 0.032474, 0.159254],
+ [0.056449, 0.034569, 0.168414],
+ [0.061340, 0.036590, 0.177642],
+ [0.066331, 0.038504, 0.186962],
+ [0.071429, 0.040294, 0.196354],
+ [0.076637, 0.041905, 0.205799],
+ [0.081962, 0.043328, 0.215289],
+ [0.087411, 0.044556, 0.224813],
+ [0.092990, 0.045583, 0.234358],
+ [0.098702, 0.046402, 0.243904],
+ [0.104551, 0.047008, 0.253430],
+ [0.110536, 0.047399, 0.262912],
+ [0.116656, 0.047574, 0.272321],
+ [0.122908, 0.047536, 0.281624],
+ [0.129285, 0.047293, 0.290788],
+ [0.135778, 0.046856, 0.299776],
+ [0.142378, 0.046242, 0.308553],
+ [0.149073, 0.045468, 0.317085],
+ [0.155850, 0.044559, 0.325338],
+ [0.162689, 0.043554, 0.333277],
+ [0.169575, 0.042489, 0.340874],
+ [0.176493, 0.041402, 0.348111],
+ [0.183429, 0.040329, 0.354971],
+ [0.190367, 0.039309, 0.361447],
+ [0.197297, 0.038400, 0.367535],
+ [0.204209, 0.037632, 0.373238],
+ [0.211095, 0.037030, 0.378563],
+ [0.217949, 0.036615, 0.383522],
+ [0.224763, 0.036405, 0.388129],
+ [0.231538, 0.036405, 0.392400],
+ [0.238273, 0.036621, 0.396353],
+ [0.244967, 0.037055, 0.400007],
+ [0.251620, 0.037705, 0.403378],
+ [0.258234, 0.038571, 0.406485],
+ [0.264810, 0.039647, 0.409345],
+ [0.271347, 0.040922, 0.411976],
+ [0.277850, 0.042353, 0.414392],
+ [0.284321, 0.043933, 0.416608],
+ [0.290763, 0.045644, 0.418637],
+ [0.297178, 0.047470, 0.420491],
+ [0.303568, 0.049396, 0.422182],
+ [0.309935, 0.051407, 0.423721],
+ [0.316282, 0.053490, 0.425116],
+ [0.322610, 0.055634, 0.426377],
+ [0.328921, 0.057827, 0.427511],
+ [0.335217, 0.060060, 0.428524],
+ [0.341500, 0.062325, 0.429425],
+ [0.347771, 0.064616, 0.430217],
+ [0.354032, 0.066925, 0.430906],
+ [0.360284, 0.069247, 0.431497],
+ [0.366529, 0.071579, 0.431994],
+ [0.372768, 0.073915, 0.432400],
+ [0.379001, 0.076253, 0.432719],
+ [0.385228, 0.078591, 0.432955],
+ [0.391453, 0.080927, 0.433109],
+ [0.397674, 0.083257, 0.433183],
+ [0.403894, 0.085580, 0.433179],
+ [0.410113, 0.087896, 0.433098],
+ [0.416331, 0.090203, 0.432943],
+ [0.422549, 0.092501, 0.432714],
+ [0.428768, 0.094790, 0.432412],
+ [0.434987, 0.097069, 0.432039],
+ [0.441207, 0.099338, 0.431594],
+ [0.447428, 0.101597, 0.431080],
+ [0.453651, 0.103848, 0.430498],
+ [0.459875, 0.106089, 0.429846],
+ [0.466100, 0.108322, 0.429125],
+ [0.472328, 0.110547, 0.428334],
+ [0.478558, 0.112764, 0.427475],
+ [0.484789, 0.114974, 0.426548],
+ [0.491022, 0.117179, 0.425552],
+ [0.497257, 0.119379, 0.424488],
+ [0.503493, 0.121575, 0.423356],
+ [0.509730, 0.123769, 0.422156],
+ [0.515967, 0.125960, 0.420887],
+ [0.522206, 0.128150, 0.419549],
+ [0.528444, 0.130341, 0.418142],
+ [0.534683, 0.132534, 0.416667],
+ [0.540920, 0.134729, 0.415123],
+ [0.547157, 0.136929, 0.413511],
+ [0.553392, 0.139134, 0.411829],
+ [0.559624, 0.141346, 0.410078],
+ [0.565854, 0.143567, 0.408258],
+ [0.572081, 0.145797, 0.406369],
+ [0.578304, 0.148039, 0.404411],
+ [0.584521, 0.150294, 0.402385],
+ [0.590734, 0.152563, 0.400290],
+ [0.596940, 0.154848, 0.398125],
+ [0.603139, 0.157151, 0.395891],
+ [0.609330, 0.159474, 0.393589],
+ [0.615513, 0.161817, 0.391219],
+ [0.621685, 0.164184, 0.388781],
+ [0.627847, 0.166575, 0.386276],
+ [0.633998, 0.168992, 0.383704],
+ [0.640135, 0.171438, 0.381065],
+ [0.646260, 0.173914, 0.378359],
+ [0.652369, 0.176421, 0.375586],
+ [0.658463, 0.178962, 0.372748],
+ [0.664540, 0.181539, 0.369846],
+ [0.670599, 0.184153, 0.366879],
+ [0.676638, 0.186807, 0.363849],
+ [0.682656, 0.189501, 0.360757],
+ [0.688653, 0.192239, 0.357603],
+ [0.694627, 0.195021, 0.354388],
+ [0.700576, 0.197851, 0.351113],
+ [0.706500, 0.200728, 0.347777],
+ [0.712396, 0.203656, 0.344383],
+ [0.718264, 0.206636, 0.340931],
+ [0.724103, 0.209670, 0.337424],
+ [0.729909, 0.212759, 0.333861],
+ [0.735683, 0.215906, 0.330245],
+ [0.741423, 0.219112, 0.326576],
+ [0.747127, 0.222378, 0.322856],
+ [0.752794, 0.225706, 0.319085],
+ [0.758422, 0.229097, 0.315266],
+ [0.764010, 0.232554, 0.311399],
+ [0.769556, 0.236077, 0.307485],
+ [0.775059, 0.239667, 0.303526],
+ [0.780517, 0.243327, 0.299523],
+ [0.785929, 0.247056, 0.295477],
+ [0.791293, 0.250856, 0.291390],
+ [0.796607, 0.254728, 0.287264],
+ [0.801871, 0.258674, 0.283099],
+ [0.807082, 0.262692, 0.278898],
+ [0.812239, 0.266786, 0.274661],
+ [0.817341, 0.270954, 0.270390],
+ [0.822386, 0.275197, 0.266085],
+ [0.827372, 0.279517, 0.261750],
+ [0.832299, 0.283913, 0.257383],
+ [0.837165, 0.288385, 0.252988],
+ [0.841969, 0.292933, 0.248564],
+ [0.846709, 0.297559, 0.244113],
+ [0.851384, 0.302260, 0.239636],
+ [0.855992, 0.307038, 0.235133],
+ [0.860533, 0.311892, 0.230606],
+ [0.865006, 0.316822, 0.226055],
+ [0.869409, 0.321827, 0.221482],
+ [0.873741, 0.326906, 0.216886],
+ [0.878001, 0.332060, 0.212268],
+ [0.882188, 0.337287, 0.207628],
+ [0.886302, 0.342586, 0.202968],
+ [0.890341, 0.347957, 0.198286],
+ [0.894305, 0.353399, 0.193584],
+ [0.898192, 0.358911, 0.188860],
+ [0.902003, 0.364492, 0.184116],
+ [0.905735, 0.370140, 0.179350],
+ [0.909390, 0.375856, 0.174563],
+ [0.912966, 0.381636, 0.169755],
+ [0.916462, 0.387481, 0.164924],
+ [0.919879, 0.393389, 0.160070],
+ [0.923215, 0.399359, 0.155193],
+ [0.926470, 0.405389, 0.150292],
+ [0.929644, 0.411479, 0.145367],
+ [0.932737, 0.417627, 0.140417],
+ [0.935747, 0.423831, 0.135440],
+ [0.938675, 0.430091, 0.130438],
+ [0.941521, 0.436405, 0.125409],
+ [0.944285, 0.442772, 0.120354],
+ [0.946965, 0.449191, 0.115272],
+ [0.949562, 0.455660, 0.110164],
+ [0.952075, 0.462178, 0.105031],
+ [0.954506, 0.468744, 0.099874],
+ [0.956852, 0.475356, 0.094695],
+ [0.959114, 0.482014, 0.089499],
+ [0.961293, 0.488716, 0.084289],
+ [0.963387, 0.495462, 0.079073],
+ [0.965397, 0.502249, 0.073859],
+ [0.967322, 0.509078, 0.068659],
+ [0.969163, 0.515946, 0.063488],
+ [0.970919, 0.522853, 0.058367],
+ [0.972590, 0.529798, 0.053324],
+ [0.974176, 0.536780, 0.048392],
+ [0.975677, 0.543798, 0.043618],
+ [0.977092, 0.550850, 0.039050],
+ [0.978422, 0.557937, 0.034931],
+ [0.979666, 0.565057, 0.031409],
+ [0.980824, 0.572209, 0.028508],
+ [0.981895, 0.579392, 0.026250],
+ [0.982881, 0.586606, 0.024661],
+ [0.983779, 0.593849, 0.023770],
+ [0.984591, 0.601122, 0.023606],
+ [0.985315, 0.608422, 0.024202],
+ [0.985952, 0.615750, 0.025592],
+ [0.986502, 0.623105, 0.027814],
+ [0.986964, 0.630485, 0.030908],
+ [0.987337, 0.637890, 0.034916],
+ [0.987622, 0.645320, 0.039886],
+ [0.987819, 0.652773, 0.045581],
+ [0.987926, 0.660250, 0.051750],
+ [0.987945, 0.667748, 0.058329],
+ [0.987874, 0.675267, 0.065257],
+ [0.987714, 0.682807, 0.072489],
+ [0.987464, 0.690366, 0.079990],
+ [0.987124, 0.697944, 0.087731],
+ [0.986694, 0.705540, 0.095694],
+ [0.986175, 0.713153, 0.103863],
+ [0.985566, 0.720782, 0.112229],
+ [0.984865, 0.728427, 0.120785],
+ [0.984075, 0.736087, 0.129527],
+ [0.983196, 0.743758, 0.138453],
+ [0.982228, 0.751442, 0.147565],
+ [0.981173, 0.759135, 0.156863],
+ [0.980032, 0.766837, 0.166353],
+ [0.978806, 0.774545, 0.176037],
+ [0.977497, 0.782258, 0.185923],
+ [0.976108, 0.789974, 0.196018],
+ [0.974638, 0.797692, 0.206332],
+ [0.973088, 0.805409, 0.216877],
+ [0.971468, 0.813122, 0.227658],
+ [0.969783, 0.820825, 0.238686],
+ [0.968041, 0.828515, 0.249972],
+ [0.966243, 0.836191, 0.261534],
+ [0.964394, 0.843848, 0.273391],
+ [0.962517, 0.851476, 0.285546],
+ [0.960626, 0.859069, 0.298010],
+ [0.958720, 0.866624, 0.310820],
+ [0.956834, 0.874129, 0.323974],
+ [0.954997, 0.881569, 0.337475],
+ [0.953215, 0.888942, 0.351369],
+ [0.951546, 0.896226, 0.365627],
+ [0.950018, 0.903409, 0.380271],
+ [0.948683, 0.910473, 0.395289],
+ [0.947594, 0.917399, 0.410665],
+ [0.946809, 0.924168, 0.426373],
+ [0.946392, 0.930761, 0.442367],
+ [0.946403, 0.937159, 0.458592],
+ [0.946903, 0.943348, 0.474970],
+ [0.947937, 0.949318, 0.491426],
+ [0.949545, 0.955063, 0.507860],
+ [0.951740, 0.960587, 0.524203],
+ [0.954529, 0.965896, 0.540361],
+ [0.957896, 0.971003, 0.556275],
+ [0.961812, 0.975924, 0.571925],
+ [0.966249, 0.980678, 0.587206],
+ [0.971162, 0.985282, 0.602154],
+ [0.976511, 0.989753, 0.616760],
+ [0.982257, 0.994109, 0.631017],
+ [0.988362, 0.998364, 0.644924]]
+
+_plasma_data = [[0.050383, 0.029803, 0.527975],
+ [0.063536, 0.028426, 0.533124],
+ [0.075353, 0.027206, 0.538007],
+ [0.086222, 0.026125, 0.542658],
+ [0.096379, 0.025165, 0.547103],
+ [0.105980, 0.024309, 0.551368],
+ [0.115124, 0.023556, 0.555468],
+ [0.123903, 0.022878, 0.559423],
+ [0.132381, 0.022258, 0.563250],
+ [0.140603, 0.021687, 0.566959],
+ [0.148607, 0.021154, 0.570562],
+ [0.156421, 0.020651, 0.574065],
+ [0.164070, 0.020171, 0.577478],
+ [0.171574, 0.019706, 0.580806],
+ [0.178950, 0.019252, 0.584054],
+ [0.186213, 0.018803, 0.587228],
+ [0.193374, 0.018354, 0.590330],
+ [0.200445, 0.017902, 0.593364],
+ [0.207435, 0.017442, 0.596333],
+ [0.214350, 0.016973, 0.599239],
+ [0.221197, 0.016497, 0.602083],
+ [0.227983, 0.016007, 0.604867],
+ [0.234715, 0.015502, 0.607592],
+ [0.241396, 0.014979, 0.610259],
+ [0.248032, 0.014439, 0.612868],
+ [0.254627, 0.013882, 0.615419],
+ [0.261183, 0.013308, 0.617911],
+ [0.267703, 0.012716, 0.620346],
+ [0.274191, 0.012109, 0.622722],
+ [0.280648, 0.011488, 0.625038],
+ [0.287076, 0.010855, 0.627295],
+ [0.293478, 0.010213, 0.629490],
+ [0.299855, 0.009561, 0.631624],
+ [0.306210, 0.008902, 0.633694],
+ [0.312543, 0.008239, 0.635700],
+ [0.318856, 0.007576, 0.637640],
+ [0.325150, 0.006915, 0.639512],
+ [0.331426, 0.006261, 0.641316],
+ [0.337683, 0.005618, 0.643049],
+ [0.343925, 0.004991, 0.644710],
+ [0.350150, 0.004382, 0.646298],
+ [0.356359, 0.003798, 0.647810],
+ [0.362553, 0.003243, 0.649245],
+ [0.368733, 0.002724, 0.650601],
+ [0.374897, 0.002245, 0.651876],
+ [0.381047, 0.001814, 0.653068],
+ [0.387183, 0.001434, 0.654177],
+ [0.393304, 0.001114, 0.655199],
+ [0.399411, 0.000859, 0.656133],
+ [0.405503, 0.000678, 0.656977],
+ [0.411580, 0.000577, 0.657730],
+ [0.417642, 0.000564, 0.658390],
+ [0.423689, 0.000646, 0.658956],
+ [0.429719, 0.000831, 0.659425],
+ [0.435734, 0.001127, 0.659797],
+ [0.441732, 0.001540, 0.660069],
+ [0.447714, 0.002080, 0.660240],
+ [0.453677, 0.002755, 0.660310],
+ [0.459623, 0.003574, 0.660277],
+ [0.465550, 0.004545, 0.660139],
+ [0.471457, 0.005678, 0.659897],
+ [0.477344, 0.006980, 0.659549],
+ [0.483210, 0.008460, 0.659095],
+ [0.489055, 0.010127, 0.658534],
+ [0.494877, 0.011990, 0.657865],
+ [0.500678, 0.014055, 0.657088],
+ [0.506454, 0.016333, 0.656202],
+ [0.512206, 0.018833, 0.655209],
+ [0.517933, 0.021563, 0.654109],
+ [0.523633, 0.024532, 0.652901],
+ [0.529306, 0.027747, 0.651586],
+ [0.534952, 0.031217, 0.650165],
+ [0.540570, 0.034950, 0.648640],
+ [0.546157, 0.038954, 0.647010],
+ [0.551715, 0.043136, 0.645277],
+ [0.557243, 0.047331, 0.643443],
+ [0.562738, 0.051545, 0.641509],
+ [0.568201, 0.055778, 0.639477],
+ [0.573632, 0.060028, 0.637349],
+ [0.579029, 0.064296, 0.635126],
+ [0.584391, 0.068579, 0.632812],
+ [0.589719, 0.072878, 0.630408],
+ [0.595011, 0.077190, 0.627917],
+ [0.600266, 0.081516, 0.625342],
+ [0.605485, 0.085854, 0.622686],
+ [0.610667, 0.090204, 0.619951],
+ [0.615812, 0.094564, 0.617140],
+ [0.620919, 0.098934, 0.614257],
+ [0.625987, 0.103312, 0.611305],
+ [0.631017, 0.107699, 0.608287],
+ [0.636008, 0.112092, 0.605205],
+ [0.640959, 0.116492, 0.602065],
+ [0.645872, 0.120898, 0.598867],
+ [0.650746, 0.125309, 0.595617],
+ [0.655580, 0.129725, 0.592317],
+ [0.660374, 0.134144, 0.588971],
+ [0.665129, 0.138566, 0.585582],
+ [0.669845, 0.142992, 0.582154],
+ [0.674522, 0.147419, 0.578688],
+ [0.679160, 0.151848, 0.575189],
+ [0.683758, 0.156278, 0.571660],
+ [0.688318, 0.160709, 0.568103],
+ [0.692840, 0.165141, 0.564522],
+ [0.697324, 0.169573, 0.560919],
+ [0.701769, 0.174005, 0.557296],
+ [0.706178, 0.178437, 0.553657],
+ [0.710549, 0.182868, 0.550004],
+ [0.714883, 0.187299, 0.546338],
+ [0.719181, 0.191729, 0.542663],
+ [0.723444, 0.196158, 0.538981],
+ [0.727670, 0.200586, 0.535293],
+ [0.731862, 0.205013, 0.531601],
+ [0.736019, 0.209439, 0.527908],
+ [0.740143, 0.213864, 0.524216],
+ [0.744232, 0.218288, 0.520524],
+ [0.748289, 0.222711, 0.516834],
+ [0.752312, 0.227133, 0.513149],
+ [0.756304, 0.231555, 0.509468],
+ [0.760264, 0.235976, 0.505794],
+ [0.764193, 0.240396, 0.502126],
+ [0.768090, 0.244817, 0.498465],
+ [0.771958, 0.249237, 0.494813],
+ [0.775796, 0.253658, 0.491171],
+ [0.779604, 0.258078, 0.487539],
+ [0.783383, 0.262500, 0.483918],
+ [0.787133, 0.266922, 0.480307],
+ [0.790855, 0.271345, 0.476706],
+ [0.794549, 0.275770, 0.473117],
+ [0.798216, 0.280197, 0.469538],
+ [0.801855, 0.284626, 0.465971],
+ [0.805467, 0.289057, 0.462415],
+ [0.809052, 0.293491, 0.458870],
+ [0.812612, 0.297928, 0.455338],
+ [0.816144, 0.302368, 0.451816],
+ [0.819651, 0.306812, 0.448306],
+ [0.823132, 0.311261, 0.444806],
+ [0.826588, 0.315714, 0.441316],
+ [0.830018, 0.320172, 0.437836],
+ [0.833422, 0.324635, 0.434366],
+ [0.836801, 0.329105, 0.430905],
+ [0.840155, 0.333580, 0.427455],
+ [0.843484, 0.338062, 0.424013],
+ [0.846788, 0.342551, 0.420579],
+ [0.850066, 0.347048, 0.417153],
+ [0.853319, 0.351553, 0.413734],
+ [0.856547, 0.356066, 0.410322],
+ [0.859750, 0.360588, 0.406917],
+ [0.862927, 0.365119, 0.403519],
+ [0.866078, 0.369660, 0.400126],
+ [0.869203, 0.374212, 0.396738],
+ [0.872303, 0.378774, 0.393355],
+ [0.875376, 0.383347, 0.389976],
+ [0.878423, 0.387932, 0.386600],
+ [0.881443, 0.392529, 0.383229],
+ [0.884436, 0.397139, 0.379860],
+ [0.887402, 0.401762, 0.376494],
+ [0.890340, 0.406398, 0.373130],
+ [0.893250, 0.411048, 0.369768],
+ [0.896131, 0.415712, 0.366407],
+ [0.898984, 0.420392, 0.363047],
+ [0.901807, 0.425087, 0.359688],
+ [0.904601, 0.429797, 0.356329],
+ [0.907365, 0.434524, 0.352970],
+ [0.910098, 0.439268, 0.349610],
+ [0.912800, 0.444029, 0.346251],
+ [0.915471, 0.448807, 0.342890],
+ [0.918109, 0.453603, 0.339529],
+ [0.920714, 0.458417, 0.336166],
+ [0.923287, 0.463251, 0.332801],
+ [0.925825, 0.468103, 0.329435],
+ [0.928329, 0.472975, 0.326067],
+ [0.930798, 0.477867, 0.322697],
+ [0.933232, 0.482780, 0.319325],
+ [0.935630, 0.487712, 0.315952],
+ [0.937990, 0.492667, 0.312575],
+ [0.940313, 0.497642, 0.309197],
+ [0.942598, 0.502639, 0.305816],
+ [0.944844, 0.507658, 0.302433],
+ [0.947051, 0.512699, 0.299049],
+ [0.949217, 0.517763, 0.295662],
+ [0.951344, 0.522850, 0.292275],
+ [0.953428, 0.527960, 0.288883],
+ [0.955470, 0.533093, 0.285490],
+ [0.957469, 0.538250, 0.282096],
+ [0.959424, 0.543431, 0.278701],
+ [0.961336, 0.548636, 0.275305],
+ [0.963203, 0.553865, 0.271909],
+ [0.965024, 0.559118, 0.268513],
+ [0.966798, 0.564396, 0.265118],
+ [0.968526, 0.569700, 0.261721],
+ [0.970205, 0.575028, 0.258325],
+ [0.971835, 0.580382, 0.254931],
+ [0.973416, 0.585761, 0.251540],
+ [0.974947, 0.591165, 0.248151],
+ [0.976428, 0.596595, 0.244767],
+ [0.977856, 0.602051, 0.241387],
+ [0.979233, 0.607532, 0.238013],
+ [0.980556, 0.613039, 0.234646],
+ [0.981826, 0.618572, 0.231287],
+ [0.983041, 0.624131, 0.227937],
+ [0.984199, 0.629718, 0.224595],
+ [0.985301, 0.635330, 0.221265],
+ [0.986345, 0.640969, 0.217948],
+ [0.987332, 0.646633, 0.214648],
+ [0.988260, 0.652325, 0.211364],
+ [0.989128, 0.658043, 0.208100],
+ [0.989935, 0.663787, 0.204859],
+ [0.990681, 0.669558, 0.201642],
+ [0.991365, 0.675355, 0.198453],
+ [0.991985, 0.681179, 0.195295],
+ [0.992541, 0.687030, 0.192170],
+ [0.993032, 0.692907, 0.189084],
+ [0.993456, 0.698810, 0.186041],
+ [0.993814, 0.704741, 0.183043],
+ [0.994103, 0.710698, 0.180097],
+ [0.994324, 0.716681, 0.177208],
+ [0.994474, 0.722691, 0.174381],
+ [0.994553, 0.728728, 0.171622],
+ [0.994561, 0.734791, 0.168938],
+ [0.994495, 0.740880, 0.166335],
+ [0.994355, 0.746995, 0.163821],
+ [0.994141, 0.753137, 0.161404],
+ [0.993851, 0.759304, 0.159092],
+ [0.993482, 0.765499, 0.156891],
+ [0.993033, 0.771720, 0.154808],
+ [0.992505, 0.777967, 0.152855],
+ [0.991897, 0.784239, 0.151042],
+ [0.991209, 0.790537, 0.149377],
+ [0.990439, 0.796859, 0.147870],
+ [0.989587, 0.803205, 0.146529],
+ [0.988648, 0.809579, 0.145357],
+ [0.987621, 0.815978, 0.144363],
+ [0.986509, 0.822401, 0.143557],
+ [0.985314, 0.828846, 0.142945],
+ [0.984031, 0.835315, 0.142528],
+ [0.982653, 0.841812, 0.142303],
+ [0.981190, 0.848329, 0.142279],
+ [0.979644, 0.854866, 0.142453],
+ [0.977995, 0.861432, 0.142808],
+ [0.976265, 0.868016, 0.143351],
+ [0.974443, 0.874622, 0.144061],
+ [0.972530, 0.881250, 0.144923],
+ [0.970533, 0.887896, 0.145919],
+ [0.968443, 0.894564, 0.147014],
+ [0.966271, 0.901249, 0.148180],
+ [0.964021, 0.907950, 0.149370],
+ [0.961681, 0.914672, 0.150520],
+ [0.959276, 0.921407, 0.151566],
+ [0.956808, 0.928152, 0.152409],
+ [0.954287, 0.934908, 0.152921],
+ [0.951726, 0.941671, 0.152925],
+ [0.949151, 0.948435, 0.152178],
+ [0.946602, 0.955190, 0.150328],
+ [0.944152, 0.961916, 0.146861],
+ [0.941896, 0.968590, 0.140956],
+ [0.940015, 0.975158, 0.131326]]
+
+_viridis_data = [[0.267004, 0.004874, 0.329415],
+ [0.268510, 0.009605, 0.335427],
+ [0.269944, 0.014625, 0.341379],
+ [0.271305, 0.019942, 0.347269],
+ [0.272594, 0.025563, 0.353093],
+ [0.273809, 0.031497, 0.358853],
+ [0.274952, 0.037752, 0.364543],
+ [0.276022, 0.044167, 0.370164],
+ [0.277018, 0.050344, 0.375715],
+ [0.277941, 0.056324, 0.381191],
+ [0.278791, 0.062145, 0.386592],
+ [0.279566, 0.067836, 0.391917],
+ [0.280267, 0.073417, 0.397163],
+ [0.280894, 0.078907, 0.402329],
+ [0.281446, 0.084320, 0.407414],
+ [0.281924, 0.089666, 0.412415],
+ [0.282327, 0.094955, 0.417331],
+ [0.282656, 0.100196, 0.422160],
+ [0.282910, 0.105393, 0.426902],
+ [0.283091, 0.110553, 0.431554],
+ [0.283197, 0.115680, 0.436115],
+ [0.283229, 0.120777, 0.440584],
+ [0.283187, 0.125848, 0.444960],
+ [0.283072, 0.130895, 0.449241],
+ [0.282884, 0.135920, 0.453427],
+ [0.282623, 0.140926, 0.457517],
+ [0.282290, 0.145912, 0.461510],
+ [0.281887, 0.150881, 0.465405],
+ [0.281412, 0.155834, 0.469201],
+ [0.280868, 0.160771, 0.472899],
+ [0.280255, 0.165693, 0.476498],
+ [0.279574, 0.170599, 0.479997],
+ [0.278826, 0.175490, 0.483397],
+ [0.278012, 0.180367, 0.486697],
+ [0.277134, 0.185228, 0.489898],
+ [0.276194, 0.190074, 0.493001],
+ [0.275191, 0.194905, 0.496005],
+ [0.274128, 0.199721, 0.498911],
+ [0.273006, 0.204520, 0.501721],
+ [0.271828, 0.209303, 0.504434],
+ [0.270595, 0.214069, 0.507052],
+ [0.269308, 0.218818, 0.509577],
+ [0.267968, 0.223549, 0.512008],
+ [0.266580, 0.228262, 0.514349],
+ [0.265145, 0.232956, 0.516599],
+ [0.263663, 0.237631, 0.518762],
+ [0.262138, 0.242286, 0.520837],
+ [0.260571, 0.246922, 0.522828],
+ [0.258965, 0.251537, 0.524736],
+ [0.257322, 0.256130, 0.526563],
+ [0.255645, 0.260703, 0.528312],
+ [0.253935, 0.265254, 0.529983],
+ [0.252194, 0.269783, 0.531579],
+ [0.250425, 0.274290, 0.533103],
+ [0.248629, 0.278775, 0.534556],
+ [0.246811, 0.283237, 0.535941],
+ [0.244972, 0.287675, 0.537260],
+ [0.243113, 0.292092, 0.538516],
+ [0.241237, 0.296485, 0.539709],
+ [0.239346, 0.300855, 0.540844],
+ [0.237441, 0.305202, 0.541921],
+ [0.235526, 0.309527, 0.542944],
+ [0.233603, 0.313828, 0.543914],
+ [0.231674, 0.318106, 0.544834],
+ [0.229739, 0.322361, 0.545706],
+ [0.227802, 0.326594, 0.546532],
+ [0.225863, 0.330805, 0.547314],
+ [0.223925, 0.334994, 0.548053],
+ [0.221989, 0.339161, 0.548752],
+ [0.220057, 0.343307, 0.549413],
+ [0.218130, 0.347432, 0.550038],
+ [0.216210, 0.351535, 0.550627],
+ [0.214298, 0.355619, 0.551184],
+ [0.212395, 0.359683, 0.551710],
+ [0.210503, 0.363727, 0.552206],
+ [0.208623, 0.367752, 0.552675],
+ [0.206756, 0.371758, 0.553117],
+ [0.204903, 0.375746, 0.553533],
+ [0.203063, 0.379716, 0.553925],
+ [0.201239, 0.383670, 0.554294],
+ [0.199430, 0.387607, 0.554642],
+ [0.197636, 0.391528, 0.554969],
+ [0.195860, 0.395433, 0.555276],
+ [0.194100, 0.399323, 0.555565],
+ [0.192357, 0.403199, 0.555836],
+ [0.190631, 0.407061, 0.556089],
+ [0.188923, 0.410910, 0.556326],
+ [0.187231, 0.414746, 0.556547],
+ [0.185556, 0.418570, 0.556753],
+ [0.183898, 0.422383, 0.556944],
+ [0.182256, 0.426184, 0.557120],
+ [0.180629, 0.429975, 0.557282],
+ [0.179019, 0.433756, 0.557430],
+ [0.177423, 0.437527, 0.557565],
+ [0.175841, 0.441290, 0.557685],
+ [0.174274, 0.445044, 0.557792],
+ [0.172719, 0.448791, 0.557885],
+ [0.171176, 0.452530, 0.557965],
+ [0.169646, 0.456262, 0.558030],
+ [0.168126, 0.459988, 0.558082],
+ [0.166617, 0.463708, 0.558119],
+ [0.165117, 0.467423, 0.558141],
+ [0.163625, 0.471133, 0.558148],
+ [0.162142, 0.474838, 0.558140],
+ [0.160665, 0.478540, 0.558115],
+ [0.159194, 0.482237, 0.558073],
+ [0.157729, 0.485932, 0.558013],
+ [0.156270, 0.489624, 0.557936],
+ [0.154815, 0.493313, 0.557840],
+ [0.153364, 0.497000, 0.557724],
+ [0.151918, 0.500685, 0.557587],
+ [0.150476, 0.504369, 0.557430],
+ [0.149039, 0.508051, 0.557250],
+ [0.147607, 0.511733, 0.557049],
+ [0.146180, 0.515413, 0.556823],
+ [0.144759, 0.519093, 0.556572],
+ [0.143343, 0.522773, 0.556295],
+ [0.141935, 0.526453, 0.555991],
+ [0.140536, 0.530132, 0.555659],
+ [0.139147, 0.533812, 0.555298],
+ [0.137770, 0.537492, 0.554906],
+ [0.136408, 0.541173, 0.554483],
+ [0.135066, 0.544853, 0.554029],
+ [0.133743, 0.548535, 0.553541],
+ [0.132444, 0.552216, 0.553018],
+ [0.131172, 0.555899, 0.552459],
+ [0.129933, 0.559582, 0.551864],
+ [0.128729, 0.563265, 0.551229],
+ [0.127568, 0.566949, 0.550556],
+ [0.126453, 0.570633, 0.549841],
+ [0.125394, 0.574318, 0.549086],
+ [0.124395, 0.578002, 0.548287],
+ [0.123463, 0.581687, 0.547445],
+ [0.122606, 0.585371, 0.546557],
+ [0.121831, 0.589055, 0.545623],
+ [0.121148, 0.592739, 0.544641],
+ [0.120565, 0.596422, 0.543611],
+ [0.120092, 0.600104, 0.542530],
+ [0.119738, 0.603785, 0.541400],
+ [0.119512, 0.607464, 0.540218],
+ [0.119423, 0.611141, 0.538982],
+ [0.119483, 0.614817, 0.537692],
+ [0.119699, 0.618490, 0.536347],
+ [0.120081, 0.622161, 0.534946],
+ [0.120638, 0.625828, 0.533488],
+ [0.121380, 0.629492, 0.531973],
+ [0.122312, 0.633153, 0.530398],
+ [0.123444, 0.636809, 0.528763],
+ [0.124780, 0.640461, 0.527068],
+ [0.126326, 0.644107, 0.525311],
+ [0.128087, 0.647749, 0.523491],
+ [0.130067, 0.651384, 0.521608],
+ [0.132268, 0.655014, 0.519661],
+ [0.134692, 0.658636, 0.517649],
+ [0.137339, 0.662252, 0.515571],
+ [0.140210, 0.665859, 0.513427],
+ [0.143303, 0.669459, 0.511215],
+ [0.146616, 0.673050, 0.508936],
+ [0.150148, 0.676631, 0.506589],
+ [0.153894, 0.680203, 0.504172],
+ [0.157851, 0.683765, 0.501686],
+ [0.162016, 0.687316, 0.499129],
+ [0.166383, 0.690856, 0.496502],
+ [0.170948, 0.694384, 0.493803],
+ [0.175707, 0.697900, 0.491033],
+ [0.180653, 0.701402, 0.488189],
+ [0.185783, 0.704891, 0.485273],
+ [0.191090, 0.708366, 0.482284],
+ [0.196571, 0.711827, 0.479221],
+ [0.202219, 0.715272, 0.476084],
+ [0.208030, 0.718701, 0.472873],
+ [0.214000, 0.722114, 0.469588],
+ [0.220124, 0.725509, 0.466226],
+ [0.226397, 0.728888, 0.462789],
+ [0.232815, 0.732247, 0.459277],
+ [0.239374, 0.735588, 0.455688],
+ [0.246070, 0.738910, 0.452024],
+ [0.252899, 0.742211, 0.448284],
+ [0.259857, 0.745492, 0.444467],
+ [0.266941, 0.748751, 0.440573],
+ [0.274149, 0.751988, 0.436601],
+ [0.281477, 0.755203, 0.432552],
+ [0.288921, 0.758394, 0.428426],
+ [0.296479, 0.761561, 0.424223],
+ [0.304148, 0.764704, 0.419943],
+ [0.311925, 0.767822, 0.415586],
+ [0.319809, 0.770914, 0.411152],
+ [0.327796, 0.773980, 0.406640],
+ [0.335885, 0.777018, 0.402049],
+ [0.344074, 0.780029, 0.397381],
+ [0.352360, 0.783011, 0.392636],
+ [0.360741, 0.785964, 0.387814],
+ [0.369214, 0.788888, 0.382914],
+ [0.377779, 0.791781, 0.377939],
+ [0.386433, 0.794644, 0.372886],
+ [0.395174, 0.797475, 0.367757],
+ [0.404001, 0.800275, 0.362552],
+ [0.412913, 0.803041, 0.357269],
+ [0.421908, 0.805774, 0.351910],
+ [0.430983, 0.808473, 0.346476],
+ [0.440137, 0.811138, 0.340967],
+ [0.449368, 0.813768, 0.335384],
+ [0.458674, 0.816363, 0.329727],
+ [0.468053, 0.818921, 0.323998],
+ [0.477504, 0.821444, 0.318195],
+ [0.487026, 0.823929, 0.312321],
+ [0.496615, 0.826376, 0.306377],
+ [0.506271, 0.828786, 0.300362],
+ [0.515992, 0.831158, 0.294279],
+ [0.525776, 0.833491, 0.288127],
+ [0.535621, 0.835785, 0.281908],
+ [0.545524, 0.838039, 0.275626],
+ [0.555484, 0.840254, 0.269281],
+ [0.565498, 0.842430, 0.262877],
+ [0.575563, 0.844566, 0.256415],
+ [0.585678, 0.846661, 0.249897],
+ [0.595839, 0.848717, 0.243329],
+ [0.606045, 0.850733, 0.236712],
+ [0.616293, 0.852709, 0.230052],
+ [0.626579, 0.854645, 0.223353],
+ [0.636902, 0.856542, 0.216620],
+ [0.647257, 0.858400, 0.209861],
+ [0.657642, 0.860219, 0.203082],
+ [0.668054, 0.861999, 0.196293],
+ [0.678489, 0.863742, 0.189503],
+ [0.688944, 0.865448, 0.182725],
+ [0.699415, 0.867117, 0.175971],
+ [0.709898, 0.868751, 0.169257],
+ [0.720391, 0.870350, 0.162603],
+ [0.730889, 0.871916, 0.156029],
+ [0.741388, 0.873449, 0.149561],
+ [0.751884, 0.874951, 0.143228],
+ [0.762373, 0.876424, 0.137064],
+ [0.772852, 0.877868, 0.131109],
+ [0.783315, 0.879285, 0.125405],
+ [0.793760, 0.880678, 0.120005],
+ [0.804182, 0.882046, 0.114965],
+ [0.814576, 0.883393, 0.110347],
+ [0.824940, 0.884720, 0.106217],
+ [0.835270, 0.886029, 0.102646],
+ [0.845561, 0.887322, 0.099702],
+ [0.855810, 0.888601, 0.097452],
+ [0.866013, 0.889868, 0.095953],
+ [0.876168, 0.891125, 0.095250],
+ [0.886271, 0.892374, 0.095374],
+ [0.896320, 0.893616, 0.096335],
+ [0.906311, 0.894855, 0.098125],
+ [0.916242, 0.896091, 0.100717],
+ [0.926106, 0.897330, 0.104071],
+ [0.935904, 0.898570, 0.108131],
+ [0.945636, 0.899815, 0.112838],
+ [0.955300, 0.901065, 0.118128],
+ [0.964894, 0.902323, 0.123941],
+ [0.974417, 0.903590, 0.130215],
+ [0.983868, 0.904867, 0.136897],
+ [0.993248, 0.906157, 0.143936]]
+
+from matplotlib.colors import ListedColormap
+
+cmaps = {}
+for (name, data) in (('magma', _magma_data),
+ ('inferno', _inferno_data),
+ ('plasma', _plasma_data),
+ ('viridis', _viridis_data)):
+
+ cmaps[name] = ListedColormap(data, name=name)
+
+magma = cmaps['magma']
+inferno = cmaps['inferno']
+plasma = cmaps['plasma']
+viridis = cmaps['viridis']
+
\ No newline at end of file
diff --git a/res_utils.py b/res_utils.py
new file mode 100644
index 0000000..54957d2
--- /dev/null
+++ b/res_utils.py
@@ -0,0 +1,598 @@
+from __future__ import division
+
+from pylab import *
+import scipy
+import time
+
+import sklearn
+from sklearn.decomposition import PCA, FastICA, TruncatedSVD, NMF
+
+import colormaps
+
+plt.rcParams.update({'axes.titlesize': 'xx-large'})
+plt.rcParams.update({'axes.labelsize': 'xx-large'})
+plt.rcParams.update({'xtick.labelsize': 'x-large', 'ytick.labelsize': 'x-large'})
+plt.rcParams.update({'legend.fontsize': 'x-large'})
+plt.rcParams.update({'text.usetex': True})
+
+def clip(img):
+ cimg = img.copy()
+ cimg[cimg > 1] = 1
+ cimg[cimg < 1] = -1
+ return cimg
+
+def norm_range(v):
+ return (v-v.min())/(v.max()-v.min())
+
+def svd_whiten(X):
+
+ U, s, Vh = np.linalg.svd(X, full_matrices=False)
+
+ # U and Vt are the singular matrices, and s contains the singular values.
+ # Since the rows of both U and Vt are orthonormal vectors, then U * Vt
+ # will be white
+ X_white = np.dot(U, Vh)
+
+ return X_white
+
+def fhrr_vec(D, N):
+ if D == 1:
+ # pick a random phase
+ rphase = 2 * np.pi * np.random.rand(N // 2)
+ fhrrv = np.zeros(2 * (N//2))
+ fhrrv[:(N//2)] = np.cos(rphase)
+ fhrrv[(N//2):] = np.sin(rphase)
+ return fhrrv
+
+ # pick a random phase
+ rphase = 2 * np.pi * np.random.rand(D, N // 2)
+
+ fhrrv = np.zeros((D, 2 * (N//2)))
+ fhrrv[:, :(N//2)] = np.cos(rphase)
+ fhrrv[:, (N//2):] = np.sin(rphase)
+
+ return fhrrv
+
+def cdot(v1, v2):
+ return np.dot(np.real(v1), np.real(v2)) + np.dot(np.imag(v1), np.imag(v2))
+
+def cvec(N, D=1):
+ rphase = 2 * np.pi * np.random.rand(N)
+ if D == 1:
+ return np.cos(rphase) + 1.0j * np.sin(rphase)
+ vecs = np.zeros((D,N), 'complex')
+ for i in range(D):
+ vecs[i] = np.cos(rphase * (i+1)) + 1.0j * np.sin(rphase * (i+1))
+ return vecs
+
+def crvec(N, D=1):
+ rphase = 2*np.pi * np.random.rand(D, N)
+ return np.cos(rphase) + 1.0j * np.sin(rphase)
+
+
+def roots(z, n):
+ nthRootOfr = np.abs(z)**(1.0/n)
+ t = np.angle(z)
+ return map(lambda k: nthRootOfr*np.exp((t+2*k*pi)*1j/n), range(n))
+
+def cvecl(N, loopsize=None):
+ if loopsize is None:
+ loopsize=N
+
+ unity_roots = np.array(list(roots(1.0 + 0.0j, loopsize)))
+ root_idxs = np.random.randint(loopsize, size=N)
+ X1 = unity_roots[root_idxs]
+
+ return X1
+
+def cvecff(N,D,iff=1, iNf=None):
+ if iNf is None:
+ iNf = N
+
+ rphase = 2 * np.pi * np.random.randint(N//iff, size=(N,D)) / iNf
+ return np.cos(rphase) + 1.0j * np.sin(rphase)
+
+def inv_hyper(v):
+ conj = np.conj(v)
+ inv = conj / np.abs(conj)
+ return inv
+
+# D = (number x color x position)
+def res_codebook_cts(N=10000, D=(180, 180, 80)):
+ vecs = []
+
+ for iD, Dv in enumerate(D):
+ #v = 2 * (np.random.randn(Dv, N) < 0) - 1
+ v = cvec(N,Dv).T
+
+ # stack the identity vector
+ cv = cvec(N,1)
+ cv[:] = 1.5
+ v = np.vstack((v, cv))
+
+ vecs.append(v)
+
+ return vecs
+
+# D = (number x color x position)
+def res_codebook_bin(N=10000, D=(180, 180, 80)):
+ vecs = []
+
+ for iD, Dv in enumerate(D):
+ v = 2 * (np.random.randn(Dv, N) < 0) - 1
+
+ # stack the identity vector
+ cv = np.ones(N,1)
+ v = np.vstack((v, cv))
+
+ vecs.append(v)
+
+ return vecs
+
+def make_sparse_ngram_vec(probs, vecs):
+ N = vecs[0].shape[1]
+ mem_vec = np.zeros(N).astype('complex')
+ sparse_ngrams = len(probs)*[0]
+
+ for ip, pv in enumerate(probs):
+ bv = np.ones(N).astype('complex')
+
+ ic_idxs = len(vecs)*[0]
+
+ for iD in range(len(vecs)):
+ Dv = vecs[iD].shape[0]
+
+ ic_idxs[iD] = np.random.randint(Dv)
+
+ i_coefs = np.zeros(Dv).astype('complex')
+ i_coefs[ic_idxs[iD]] = 1.0
+
+ bv *= np.dot(i_coefs, vecs[iD])
+
+ mem_vec += pv * bv
+ sparse_ngrams[ip] = ic_idxs
+
+ return mem_vec, sparse_ngrams
+
+def make_sparse_continuous_ngram_vec(probs, vecs):
+ N = vecs[0].shape[1]
+ mem_vec = np.zeros(N).astype('complex')
+ sparse_ngrams = len(probs)*[0]
+
+ for ip, pv in enumerate(probs):
+ bv = np.ones(N).astype('complex')
+
+ ic_idxs = len(vecs)*[0]
+
+ for iD in range(len(vecs)):
+ Dv = vecs[iD].shape[0]
+
+ ic_idxs[iD] = (Dv-2) * np.random.rand() + 1
+
+ bv *= vecs[iD][0,:] ** ic_idxs[iD]
+ #bv *= np.dot(i_coefs, vecs[iD])
+
+ mem_vec += pv * bv
+ sparse_ngrams[ip] = ic_idxs
+
+ return mem_vec, sparse_ngrams
+
+def res_decode(bound_vec, vecs, max_steps=100):
+
+ x_states = []
+ x_hists = []
+
+ for iD in range(len(vecs)):
+ N = vecs[iD].shape[1]
+ Dv = vecs[iD].shape[0]
+
+ x_st = cvec(N, 1)
+ x_st = x_st / np.linalg.norm(x_st)
+ x_states.append(x_st)
+
+ x_hi = np.zeros((max_steps, Dv))
+ x_hists.append(x_hi)
+
+
+ for i in range(max_steps):
+ th_vec = bound_vec.copy()
+ all_converged = np.zeros(len(vecs))
+ for iD in range(len(vecs)):
+ x_hists[iD][i, :] = np.real(np.dot(np.conj(vecs[iD]), x_states[iD]))
+
+ if i > 1:
+ all_converged[iD] = np.allclose(x_hists[iD][i,:], x_hists[iD][i-1, :],
+ atol=5e-3, rtol=2e-2)
+
+ xidx = np.argmax(np.abs(np.real(x_hists[iD][i, :])))
+ x_states[iD] *= np.sign(x_hists[iD][i, xidx])
+
+ th_vec *= np.conj(x_states[iD])
+
+ if np.all(all_converged):
+ print('converged:', i, end=" ")
+ break
+
+ for iD in range(len(vecs)):
+ x_upd = th_vec / np.conj(x_states[iD])
+
+ x_upd = np.dot(vecs[iD].T, np.real(np.dot(np.conj(vecs[iD]), x_upd)))
+
+ x_states[iD] = x_upd / np.linalg.norm(x_upd)
+
+ return x_hists, i
+
+def res_decode_slow(bound_vec, vecs, max_steps=100):
+
+ x_states = []
+ x_hists = []
+
+ for iD in range(len(vecs)):
+ N = vecs[iD].shape[1]
+ Dv = vecs[iD].shape[0]
+
+ x_st = cvec(N, 1)
+ x_st = x_st / np.linalg.norm(x_st)
+ x_states.append(x_st)
+
+ x_hi = np.zeros((max_steps, Dv))
+ x_hists.append(x_hi)
+
+
+ for i in range(max_steps):
+ th_vec = bound_vec.copy()
+ all_converged = np.zeros(len(vecs))
+ for iD in range(len(vecs)):
+ x_hists[iD][i, :] = np.real(np.dot(np.conj(vecs[iD]), x_states[iD]))
+
+ if i > 1:
+ all_converged[iD] = np.allclose(x_hists[iD][i,:], x_hists[iD][i-1, :],
+ atol=5e-3, rtol=2e-2)
+
+ xidx = np.argmax(np.abs(np.real(x_hists[iD][i, :])))
+ x_states[iD] *= np.sign(x_hists[iD][i, xidx])
+
+ th_vec *= np.conj(x_states[iD])
+
+ if np.all(all_converged):
+ print('converged:', i, end=" ")
+ break
+
+ for iD in range(len(vecs)):
+ x_upd = th_vec / np.conj(x_states[iD])
+
+ x_upd = np.dot(vecs[iD].T, np.real(np.dot(np.conj(vecs[iD]), x_upd)))
+
+ x_states[iD] = (0.9*x_upd / np.linalg.norm(x_upd) + 0.1 * x_states[iD])
+
+ return x_hists, i
+
+def res_decode_abs(bound_vec, vecs, max_steps=100, x_hi_init=None):
+
+ x_states = []
+ x_hists = []
+
+ for iD in range(len(vecs)):
+ N = vecs[iD].shape[1]
+ Dv = vecs[iD].shape[0]
+
+ if x_hi_init is None:
+ x_st = crvec(N, 1)
+ x_st = np.squeeze(x_st / np.abs(x_st))
+ else:
+ x_st = np.dot(vecs[iD].T, x_hi_init[iD])
+
+ x_states.append(x_st)
+
+ x_hi = np.zeros((max_steps, Dv))
+ x_hists.append(x_hi)
+
+
+ for i in range(max_steps):
+ th_vec = bound_vec.copy()
+ all_converged = np.zeros(len(vecs))
+ for iD in range(len(vecs)):
+ if i > 1:
+ xidx = np.argmax(np.abs(np.real(x_hists[iD][i-1, :])))
+ x_states[iD] *= np.sign(x_hists[iD][i-1, xidx])
+
+ th_vec *= np.conj(x_states[iD])
+
+ for iD in range(len(vecs)):
+ x_upd = th_vec / np.conj(x_states[iD])
+
+ x_upd = np.dot(vecs[iD].T, np.real(np.dot(np.conj(vecs[iD]), x_upd)) )
+ #x_upd = np.dot(vecs[iD].T, np.dot(np.conj(vecs[iD]), x_upd))
+
+ #x_states[iD] = 0.9*(x_upd / np.abs(x_upd)) + 0.1*x_states[iD]
+ x_states[iD] = (x_upd / np.abs(x_upd))
+
+ x_hists[iD][i, :] = np.real(np.dot(np.conj(vecs[iD]), x_states[iD]))
+
+ if i > 1:
+ all_converged[iD] = np.allclose(x_hists[iD][i,:], x_hists[iD][i-1, :],
+ atol=5e-3, rtol=2e-2)
+
+ if np.all(all_converged):
+ print('converged:', i,)
+ break
+
+ return x_hists, i
+
+def res_decode_abs_slow(bound_vec, vecs, max_steps=100, x_hi_init=None):
+
+ x_states = []
+ x_hists = []
+
+ for iD in range(len(vecs)):
+ N = vecs[iD].shape[1]
+ Dv = vecs[iD].shape[0]
+
+ if x_hi_init is None:
+ x_st = crvec(N, 1)
+ x_st = np.squeeze(x_st / np.abs(x_st))
+ else:
+ x_st = np.dot(vecs[iD].T, x_hi_init[iD])
+
+ x_states.append(x_st)
+
+ x_hi = np.zeros((max_steps, Dv))
+ x_hists.append(x_hi)
+
+
+ for i in range(max_steps):
+ th_vec = bound_vec.copy()
+ all_converged = np.zeros(len(vecs))
+ for iD in range(len(vecs)):
+ if i > 1:
+ xidx = np.argmax(np.abs(np.real(x_hists[iD][i-1, :])))
+ x_states[iD] *= np.sign(x_hists[iD][i-1, xidx])
+
+ th_vec *= np.conj(x_states[iD])
+
+ for iD in range(len(vecs)):
+ x_upd = th_vec / np.conj(x_states[iD])
+
+ x_upd = np.dot(vecs[iD].T, np.real(np.dot(np.conj(vecs[iD]), x_upd)) )
+ #x_upd = np.dot(vecs[iD].T, np.dot(np.conj(vecs[iD]), x_upd))
+
+ x_states[iD] = 0.9*(x_upd / np.abs(x_upd)) + 0.1*x_states[iD]
+ #x_states[iD] = (x_upd / np.abs(x_upd))
+
+ x_hists[iD][i, :] = np.real(np.dot(np.conj(vecs[iD]), x_states[iD]))
+
+ if i > 1:
+ all_converged[iD] = np.allclose(x_hists[iD][i,:], x_hists[iD][i-1, :],
+ atol=5e-3, rtol=2e-2)
+
+ if np.all(all_converged):
+ print('converged:', i,)
+ break
+
+ return x_hists, i
+
+def res_decode_abs_exaway(bound_vec, vecs, max_steps=100, x_hi_init=None):
+ x_states = []
+ x_hists = []
+ ra_hist = []
+ vecsw = []
+
+ for iD in range(len(vecs)):
+ N = vecs[iD].shape[1]
+ Dv = vecs[iD].shape[0]
+
+ if x_hi_init is None:
+ x_st = crvec(N, 1)
+ x_st = np.squeeze(x_st / np.abs(x_st))
+ else:
+ x_st = np.dot(vecs[iD].T, x_hi_init[iD])
+
+ x_states.append(x_st)
+
+ x_hi = np.zeros((max_steps, Dv))
+ x_hists.append(x_hi)
+
+ vecsw.append(svd_whiten(vecs[iD]))
+ print(vecsw[iD].shape, vecs[iD].shape)
+ for i in range(max_steps):
+
+ res_recon = crvec(N, 1) ** 0
+
+ for iD in range(len(vecs)):
+ rr = np.dot(vecs[iD].T, np.real(np.dot(np.conj(vecs[iD]), x_states[iD])))
+ rr /= np.abs(rr)
+
+ res_recon *= rr
+
+
+ #res_recon = np.prod(x_states)
+ res_alpha = cdot(res_recon, bound_vec) / N
+ ra_hist.append(res_alpha)
+
+ th_vec = bound_vec.copy() - res_alpha * res_recon
+
+ all_converged = np.zeros(len(vecs))
+
+
+ th_vec *= np.conj(res_recon)
+
+ #rr2 = np.prod(x_states)
+ #th_vec *= np.conj(rr2)
+
+ #for iD in range(len(vecs)):
+ #if i > 1:
+ # xidx = np.argmax(np.abs(np.real(x_hists[iD][i-1, :])))
+ # x_states[iD] *= np.sign(x_hists[iD][i-1, xidx])
+
+ #th_vec *= np.conj(x_states[iD])
+
+ for iD in range(len(vecs)):
+ x_upd = th_vec / np.conj(x_states[iD])
+
+ x_upd = np.dot(vecsw[iD].T, np.real(np.dot(np.conj(vecsw[iD]), x_upd.T)) )
+ #x_upd = np.dot(vecs[iD].T, np.dot(np.conj(vecs[iD]), x_upd))
+
+ #x_states[iD] = 0.85*(x_upd / np.abs(x_upd)) + 0.15*x_states[iD]
+ #x_states[iD] +=
+ x_states[iD] += (x_upd / np.abs(x_upd))
+ x_states[iD] /= np.abs(x_states[iD])
+
+ x_hists[iD][i, :] = np.real(np.dot(np.conj(vecs[iD]), x_states[iD]))
+
+ if i > 1:
+ all_converged[iD] = np.allclose(x_hists[iD][i,:], x_hists[iD][i-1, :],
+ atol=5e-3, rtol=2e-2)
+
+ if np.all(all_converged):
+ print('converged:', i, end=" ")
+ break
+
+ return x_hists, i, ra_hist
+
+def res_decode_exaway(bound_vec, vecs, max_steps=100, x_hi_init=None):
+
+ x_states = []
+ x_hists = []
+
+ bound_vec /= norm(bound_vec)
+
+ for iD in range(len(vecs)):
+ N = vecs[iD].shape[1]
+ Dv = vecs[iD].shape[0]
+
+ if x_hi_init is None:
+ x_st = crvec(N, 1)
+ x_st = x_st / np.abs(x_st)
+ else:
+ x_st = np.dot(vecs[iD], x_hi_init[iD])
+
+ x_states.append(x_st)
+
+ x_hi = np.zeros((max_steps, Dv))
+ x_hists.append(x_hi)
+
+
+ for i in range(max_steps):
+ th_vec = bound_vec.copy()
+
+ all_converged = np.zeros(len(vecs))
+ for iD in range(len(vecs)):
+ x_hists[iD][[i], :] = np.real(np.dot(np.conj(vecs[iD]), x_states[iD].T)/N).T
+
+ if i > 1:
+ all_converged[iD] = np.allclose(x_hists[iD][i,:], x_hists[iD][i-1, :],
+ atol=5e-3, rtol=2e-2)
+
+ #xidx = np.argmax(np.abs(np.real(x_hists[iD][i, :])))
+ #x_states[iD] *= np.sign(x_hists[iD][i, xidx])
+
+ th_vec *= np.conj(x_states[iD])
+
+ if np.all(all_converged):
+ print('converged:', i, end=" ")
+ break
+
+ for iD in range(len(vecs)):
+ x_upd = th_vec / np.conj(x_states[iD])
+
+ x_upd = np.dot(vecs[iD].T, np.real(np.dot(np.conj(vecs[iD]), x_upd.T))).T / N
+
+ x_states[iD] += 0.9*x_upd
+
+ return x_hists, i
+
+def resplot_im(coef_hists, nsteps=None, vals=None, labels=None, ticks=None, gt_labels=None):
+
+ alphis = []
+ for i in range(len(coef_hists)):
+ if nsteps is None:
+ alphis.append(np.argmax(np.abs(coef_hists[i][-1,:])))
+ else:
+ alphis.append(np.argmax(np.abs(coef_hists[i][nsteps,:])))
+ print(alphis)
+
+ rows = 1
+ columns = len(coef_hists)
+
+ fig = gcf();
+ ax = columns * [0]
+
+ for j in range(columns):
+ ax[j] = fig.add_subplot(rows, columns, j+1)
+ if nsteps is not None:
+ a = np.sign(coef_hists[j][nsteps,alphis[j]])
+ coef_hists[j] *= a
+
+ x_h = coef_hists[j][:nsteps, :]
+ else:
+ a = np.sign(coef_hists[j][-1,alphis[j]])
+ coef_hists[j] *= a
+
+ x_h = coef_hists[j][:,:]
+
+ imh = ax[j].imshow(x_h, interpolation='none', aspect='auto', cmap=colormaps.viridis)
+
+ if j == 0:
+ ax[j].set_ylabel('Iterations')
+ else:
+ ax[j].set_yticks([])
+
+ if labels is not None:
+ ax[j].set_title(labels[j][alphis[j]])
+ #ax[j].set_xlabel(labels[j][alphis[j]])
+
+ if ticks is not None:
+ ax[j].set_xticks(ticks[j])
+ ax[j].set_xticklabels(labels[j][ticks[j]])
+ else:
+ ax[j].set_xticks(np.arange(len(labels[j])))
+ ax[j].set_xticklabels(labels[j])
+
+ elif vals is not None:
+ dot_val = np.dot(x_h[-1, :], vals[j])
+ #ax[j].set_title(dot_val)
+ ax[j].set_xlabel(dot_val)
+
+ #ax.set_title(vals[j][alphis[j]])
+
+ if ticks is not None:
+ ax[j].set_xticks(ticks[j])
+ ax[j].set_xticklabels(vals[j][ticks])
+ else:
+ ax[j].set_xticklabels(vals[j])
+ else:
+ ax[j].set_title(alphis[j])
+ #ax[j].set_xlabel(alphis[j])
+
+ if gt_labels is not None:
+ #ax[j].set_xlabel(gt_labels[j])
+ ax[j].set_title(gt_labels[j])
+
+ #colorbar(imh, ticks=[])
+
+ plt.tight_layout()
+
+def get_output_conv(coef_hists, nsteps=None):
+
+ alphis = []
+ fstep = coef_hists[0].shape[0]
+
+ for i in range(len(coef_hists)):
+ if nsteps is None:
+ alphis.append(np.argmax(np.abs(coef_hists[i][-1,:])))
+ else:
+ alphis.append(np.argmax(np.abs(coef_hists[i][nsteps,:])))
+ fstep = nsteps
+
+
+ for st in range(fstep-1, 0, -1):
+ aa = []
+ for i in range(len(coef_hists)):
+ aa.append(np.argmax(np.abs(coef_hists[i][st,:])))
+
+ if not alphis == aa:
+ break
+
+ return alphis, st
+
+
diff --git a/resonator_template.ipynb b/resonator_template.ipynb
new file mode 100644
index 0000000..2101bf2
--- /dev/null
+++ b/resonator_template.ipynb
@@ -0,0 +1,1272 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/homebrew/Caskroom/miniforge/base/lib/python3.9/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.26.3\n",
+ " warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n"
+ ]
+ }
+ ],
+ "source": [
+ "from pylab import *\n",
+ "import scipy\n",
+ "import time\n",
+ "\n",
+ "import matplotlib.font_manager\n",
+ "import res_utils as ru\n",
+ "from scipy.ndimage.interpolation import shift\n",
+ "from PIL import ImageFont\n",
+ "from skimage.transform import resize\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/var/folders/xn/hqbqng2d6nz8f1lcyd545kqr0000gn/T/ipykernel_2267/3468969993.py:4: MatplotlibDeprecationWarning: Support for setting an rcParam that expects a str value to a non-str value is deprecated since 3.5 and support will be removed two minor releases later.\n",
+ " matplotlib.rcParams['text.latex.preamble'] = [\n"
+ ]
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "plt.rcParams.update({'font.size': 14})\n",
+ "plt.rcParams.update({'text.usetex': True})\n",
+ "matplotlib.rcParams['text.latex.preamble'] = [\n",
+ " r'\\usepackage{amsmath}',\n",
+ " r'\\usepackage{amssymb}']\n",
+ "plt.rcParams.update({'font.family': 'serif'})\n",
+ "plt.rcParams.update({'font.family': 'serif', 'font.serif':['Computer Modern']})\n",
+ "\n",
+ "np.set_printoptions(precision=3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# You might want to see the fonts on your system and choose a different font\n",
+ "#matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext='ttf')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def norm_range(v):\n",
+ " return (v-v.min())/(v.max()-v.min())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Factorization of shape, color and location\n",
+ "\n",
+ "In this notebook, we are going to set up a simple scene analysis problem that can be solved with the resonator network. This example generates a scene by combining several factors to create an object: the object is a conjunction of shape, color and location. The shapes of the objects are given by fixed templates (letters chosen from a font). The goal will be to use VSA principles and resonator networks to infer the factors of each object from the scene.\n",
+ "\n",
+ "First, lets get some letters for the scene."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# This will determine the size of the scene\n",
+ "patch_size=[56, 56]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAEFCAYAAADjfVLrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAKIElEQVR4nO3dMW7baBrG8efN5ACMsE2qBZQLDAQ3qcfup0hOMBj7Bmv4BIlzA9ldytlpUsdHSHKDMbB1Fl5VqYJ5t+CnDMVQsmxTJj3P/wcEE5KSTHxj/UV+ZOzITAHw9WjoHQAwLCIAmCMCgDkiAJgjAoA5IgCYe9zXC0XETNKepEtJlaRFZl709foAdqOXCEREJek0Mw8a6+YRcZWZn/r4GgB2o6/TgRNJ89a6uaTznl4fwI5EH3cMRsQfkl62P/UjIiU9yczFnb8IgJ2485FAORWYqp4LaFuonicAMFJ9zAlMJGnDp3113QuUIwYAO5SZ0bW+jwhUG7ZdqUSiLSIOJR328PUB3EFvlwhvKjPPJJ1JHAkAQ+rtZqEyN9A2UX00AGCk+ojAckKw67C/Uj05CGCk7hyBMiG4vEuwazt3DQIj1tfpwIWk/eaKchsxdwsCI9fXzUKVpI+Z+ayx7t+SXm1z2zATg8DurbtE2EsEpG+f/PuqTw0mki63PRUgAsDu7TwCd0EEgN1bFwF+ngBgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYI4IAOaIAGCOCADmiABgjggA5ogAYO7xNg+KiH1JM0nPJE0lzTPz99ZjZpL2JF1KqiQtMvOi170F0LtrI1ACcJWZb8pyJeljRExb604z86DxvHlEXGXmp53sOYBebHM6MGu+kTNzIelY0mnjMSeS5q3nzSWd33UHAezWxgiUT/iD8t+mi7J9VpZfqD4N+KaEY9bxXAAjsjEC5VN/r/zpMilv8qlaESiWzwcwUtfOCWTmk47Vyzf2B0mT8rjFmpeobrNjAO7HbS8RHkk6K2/8asPjrlQi0RYRhxHxISI+3HIfAPRgq0uETeVqwTQzX97lC2fmmaSz8pp5l9cCcHs3isDyUqCkn7q2dZwSTFQfDWDkvn79urL8ww8/bHz84eHhyvL5OReCHqqbng6cS3rZerMvJwS7Dvsr1ZODAEZq6whExKmk48y8bKxbfvov7xL8DncNAuO2VQQi4lD1rcIrAdBfVwkuJO23njOTxN2CwMhte9vw8u/TxqYXKhN7qu8g/CjpTWP7iaRfe9hH3IOnT5+uLL969Wpl+ZdffllZvm7OAA/HxgiUT/v367Yv/+1AZi4i4mVE/Ev1qcFE9ZEDRwLAyG2MQDnfj21eqLzhedMDDww/TwAwd+ObhfD39Pnz55Xlt2/friy35wTw98GRAGCOCADmOB1Apz///HPoXcA94UgAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzj4feAYzDo0ernwc//vjjxsc/f/58Zfnt27cry1++fOllv7B7HAkA5ogAYI4IAOYiM4feB0XE8Dth7vXr1yvLx8fHN3r+u3fvVpZ//vnnu+4SepaZ0bWeIwHAHBEAzBEBwBxzAoAJ5gQAdCICgDkiAJgjAoA5IgCYIwKAOSIAmCMCgDkiAJgjAoA5IgCYIwKAOSIAmCMCgLlb/cjxiJhn5lFr3UzSnqRLSZWkRWZe3HkPAezUjSMQEaeSpq11laTTzDxorJtHxFVmfrrzXgLYmRudDkTEVPWnfNuJpHlr3VzS+e12C8B9uemcwL6k9x3rX6g+DfimHAHMylECgJHaOgIRsS/pt471lerTg8v2NkkL1fMEAEbqJkcCVWYuOtZPJGnNNqn79AHASGwVgYh4kZm/r9lcbXjqlUokAIzTtVcHymTgou8vHBGHkg77fl0AN7PNkcD+Ntf710wATlQfDXwnM88ycy8zmTMABrQxAmUy8LoALCcEuw77K+3gKAJAf647HagkHUWs/M6CmaS9ctPQH5l5FhHLuwS/w12DwLhtjECZDFyZECzn8srM5q+tvVB9D8GnxuNmzWUA43Sbf0BU6ftD/2NJR611J5J+vcXrA7hHW/8uwnKV4Ej13YFTSW8kvV8e7pdP/n3VcwQTSZfbngrwuwiB3Vv3uwj5haSACX4hKYBORAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMEcEAHNEADBHBABzRAAwRwQAc0QAMPd46B0o/ivpP5L+Uf6O7TFmt+M2bv9ctyEy8z53ZKOI+JCZe0Pvx0PCmN0O4/YXTgcAc0QAMDe2CJwNvQMPEGN2O4xbMao5AQD3b2xHAgDuGREAzA1+n0BEzCTtSbqUVElaZObFoDs1MhGxL2km6ZmkqaR5Zv7eegzjeI2ImGfmUWud/bgNGoGIqCSdZuZBY908Iq4y89NwezYeJQBXmfmmLFeSPkbEtLWOcdwgIk5VB7S5rhLjNvjpwImkeWvdXNL5APsyVrPmN2RmLiQdSzptPIZx3CAipqo/5dsYNw0fgReqD8O+Kd/ws1Jpa2UMDjrG4qJsn5VlxnGzfUnvO9YzbhowAmWQp2r9TygWqs/TrJVP/T2tH4sJ47hZOZ36rWN9JcZN0rBzAhPp2zd6l+re9mTEMvNJx+rlN+gHMY7XqTJzERHt9YxbMeTpQLVh25XK/yR0OpJ0Vr6Bqw2Psx7HiHjRvorSUG14qtW4DX6JEDdTDm+nmfly6H0ZszIZuBh6Px6CoScGtWYCZqK6xmhYXtKS9NOabW3O47i/zfV+xm3YCCwnZLoOuypR8S7nkl62zmMZx5ZytHRdABi3YrDTgTJZs7xLq2u71V1b1yk3uxxn5mVjXcU4dqokHbUmA2eS9so4/pGZZ4xbbeg5gQvV13C/3QxTrn3b3K21jYg4VH2r8EoAVF8luBDjuKJMBrZvqz4s244bqxk3DT8ncKx6prvpRNKvA+zLKJVD2+Xfp8s/kg5VXyKUGMdtVPr+0J9x0wh+nkAp777qc7SJpEunQ7FNyqf9/9Ztz8xoPJZx7FCCeaT67sCppDeS3i/HhnEbQQQADGvo0wEAAyMCgDkiAJgjAoA5IgCYIwKAOSIAmCMCgDkiAJj7P/pJsLDuImSOAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "