forked from horovod/horovod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
keras_spark_rossmann_estimator.py
419 lines (340 loc) · 18.1 KB
/
keras_spark_rossmann_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright 2017 onwards, fast.ai, Inc.
# Modifications copyright (C) 2019 Uber Technologies, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import argparse
import datetime
import os
import sys
from distutils.version import LooseVersion
import pyspark.sql.types as T
import pyspark.sql.functions as F
from pyspark import SparkConf, Row
from pyspark.sql import SparkSession
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense, Flatten, Reshape, BatchNormalization, Dropout
import horovod.spark.keras as hvd
from horovod.spark.common.backend import SparkBackend
from horovod.spark.common.store import Store
from horovod.tensorflow.keras.callbacks import BestModelCheckpoint
parser = argparse.ArgumentParser(description='Keras Spark Rossmann Estimator Example',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--master',
help='spark cluster to use for training. If set to None, uses current default cluster. Cluster'
'should be set up to provide a Spark task per multiple CPU cores, or per GPU, e.g. by'
'supplying `-c <NUM_GPUS>` in Spark Standalone mode')
parser.add_argument('--num-proc', type=int,
help='number of worker processes for training, default: `spark.default.parallelism`')
parser.add_argument('--learning_rate', type=float, default=0.0001,
help='initial learning rate')
parser.add_argument('--batch-size', type=int, default=100,
help='batch size')
parser.add_argument('--epochs', type=int, default=100,
help='number of epochs to train')
parser.add_argument('--sample-rate', type=float,
help='desired sampling rate. Useful to set to low number (e.g. 0.01) to make sure that '
'end-to-end process works')
parser.add_argument('--data-dir', default='file://' + os.getcwd(),
help='location of data on local filesystem (prefixed with file://) or on HDFS')
parser.add_argument('--local-submission-csv', default='submission.csv',
help='output submission predictions CSV')
parser.add_argument('--local-checkpoint-file', default='checkpoint',
help='model checkpoint')
parser.add_argument('--work-dir', default='/tmp',
help='temporary working directory to write intermediate files (prefix with hdfs:// to use HDFS)')
if __name__ == '__main__':
args = parser.parse_args()
# ================ #
# DATA PREPARATION #
# ================ #
print('================')
print('Data preparation')
print('================')
# Create Spark session for data preparation.
conf = SparkConf().setAppName('Keras Spark Rossmann Estimator Example').set('spark.sql.shuffle.partitions', '16')
if args.master:
conf.setMaster(args.master)
elif args.num_proc:
conf.setMaster('local[{}]'.format(args.num_proc))
spark = SparkSession.builder.config(conf=conf).getOrCreate()
train_csv = spark.read.csv('%s/train.csv' % args.data_dir, header=True)
test_csv = spark.read.csv('%s/test.csv' % args.data_dir, header=True)
store_csv = spark.read.csv('%s/store.csv' % args.data_dir, header=True)
store_states_csv = spark.read.csv('%s/store_states.csv' % args.data_dir, header=True)
state_names_csv = spark.read.csv('%s/state_names.csv' % args.data_dir, header=True)
google_trend_csv = spark.read.csv('%s/googletrend.csv' % args.data_dir, header=True)
weather_csv = spark.read.csv('%s/weather.csv' % args.data_dir, header=True)
def expand_date(df):
df = df.withColumn('Date', df.Date.cast(T.DateType()))
return df \
.withColumn('Year', F.year(df.Date)) \
.withColumn('Month', F.month(df.Date)) \
.withColumn('Week', F.weekofyear(df.Date)) \
.withColumn('Day', F.dayofmonth(df.Date))
def prepare_google_trend():
# Extract week start date and state.
google_trend_all = google_trend_csv \
.withColumn('Date', F.regexp_extract(google_trend_csv.week, '(.*?) -', 1)) \
.withColumn('State', F.regexp_extract(google_trend_csv.file, 'Rossmann_DE_(.*)', 1))
# Map state NI -> HB,NI to align with other data sources.
google_trend_all = google_trend_all \
.withColumn('State', F.when(google_trend_all.State == 'NI', 'HB,NI').otherwise(google_trend_all.State))
# Expand dates.
return expand_date(google_trend_all)
def add_elapsed(df, cols):
def add_elapsed_column(col, asc):
def fn(rows):
last_store, last_date = None, None
for r in rows:
if last_store != r.Store:
last_store = r.Store
last_date = r.Date
if r[col]:
last_date = r.Date
fields = r.asDict().copy()
fields[('After' if asc else 'Before') + col] = (r.Date - last_date).days
yield Row(**fields)
return fn
df = df.repartition(df.Store)
for asc in [False, True]:
sort_col = df.Date.asc() if asc else df.Date.desc()
rdd = df.sortWithinPartitions(df.Store.asc(), sort_col).rdd
for col in cols:
rdd = rdd.mapPartitions(add_elapsed_column(col, asc))
df = rdd.toDF()
return df
def prepare_df(df):
num_rows = df.count()
# Expand dates.
df = expand_date(df)
df = df \
.withColumn('Open', df.Open != '0') \
.withColumn('Promo', df.Promo != '0') \
.withColumn('StateHoliday', df.StateHoliday != '0') \
.withColumn('SchoolHoliday', df.SchoolHoliday != '0')
# Merge in store information.
store = store_csv.join(store_states_csv, 'Store')
df = df.join(store, 'Store')
# Merge in Google Trend information.
google_trend_all = prepare_google_trend()
df = df.join(google_trend_all, ['State', 'Year', 'Week']).select(df['*'], google_trend_all.trend)
# Merge in Google Trend for whole Germany.
google_trend_de = google_trend_all[google_trend_all.file == 'Rossmann_DE'].withColumnRenamed('trend', 'trend_de')
df = df.join(google_trend_de, ['Year', 'Week']).select(df['*'], google_trend_de.trend_de)
# Merge in weather.
weather = weather_csv.join(state_names_csv, weather_csv.file == state_names_csv.StateName)
df = df.join(weather, ['State', 'Date'])
# Fix null values.
df = df \
.withColumn('CompetitionOpenSinceYear', F.coalesce(df.CompetitionOpenSinceYear, F.lit(1900))) \
.withColumn('CompetitionOpenSinceMonth', F.coalesce(df.CompetitionOpenSinceMonth, F.lit(1))) \
.withColumn('Promo2SinceYear', F.coalesce(df.Promo2SinceYear, F.lit(1900))) \
.withColumn('Promo2SinceWeek', F.coalesce(df.Promo2SinceWeek, F.lit(1)))
# Days & months competition was open, cap to 2 years.
df = df.withColumn('CompetitionOpenSince',
F.to_date(F.format_string('%s-%s-15', df.CompetitionOpenSinceYear,
df.CompetitionOpenSinceMonth)))
df = df.withColumn('CompetitionDaysOpen',
F.when(df.CompetitionOpenSinceYear > 1900,
F.greatest(F.lit(0), F.least(F.lit(360 * 2), F.datediff(df.Date, df.CompetitionOpenSince))))
.otherwise(0))
df = df.withColumn('CompetitionMonthsOpen', (df.CompetitionDaysOpen / 30).cast(T.IntegerType()))
# Days & weeks of promotion, cap to 25 weeks.
df = df.withColumn('Promo2Since',
F.expr('date_add(format_string("%s-01-01", Promo2SinceYear), (cast(Promo2SinceWeek as int) - 1) * 7)'))
df = df.withColumn('Promo2Days',
F.when(df.Promo2SinceYear > 1900,
F.greatest(F.lit(0), F.least(F.lit(25 * 7), F.datediff(df.Date, df.Promo2Since))))
.otherwise(0))
df = df.withColumn('Promo2Weeks', (df.Promo2Days / 7).cast(T.IntegerType()))
# Check that we did not lose any rows through inner joins.
assert num_rows == df.count(), 'lost rows in joins'
return df
def build_vocabulary(df, cols):
vocab = {}
for col in cols:
values = [r[0] for r in df.select(col).distinct().collect()]
col_type = type([x for x in values if x is not None][0])
default_value = col_type()
vocab[col] = sorted(values, key=lambda x: x or default_value)
return vocab
def cast_columns(df, cols):
for col in cols:
df = df.withColumn(col, F.coalesce(df[col].cast(T.FloatType()), F.lit(0.0)))
return df
def lookup_columns(df, vocab):
def lookup(mapping):
def fn(v):
return mapping.index(v)
return F.udf(fn, returnType=T.IntegerType())
for col, mapping in vocab.items():
df = df.withColumn(col, lookup(mapping)(df[col]))
return df
if args.sample_rate:
train_csv = train_csv.sample(withReplacement=False, fraction=args.sample_rate)
test_csv = test_csv.sample(withReplacement=False, fraction=args.sample_rate)
# Prepare data frames from CSV files.
train_df = prepare_df(train_csv).cache()
test_df = prepare_df(test_csv).cache()
# Add elapsed times from holidays & promos, the data spanning training & test datasets.
elapsed_cols = ['Promo', 'StateHoliday', 'SchoolHoliday']
elapsed = add_elapsed(train_df.select('Date', 'Store', *elapsed_cols)
.unionAll(test_df.select('Date', 'Store', *elapsed_cols)),
elapsed_cols)
# Join with elapsed times.
train_df = train_df \
.join(elapsed, ['Date', 'Store']) \
.select(train_df['*'], *[prefix + col for prefix in ['Before', 'After'] for col in elapsed_cols])
test_df = test_df \
.join(elapsed, ['Date', 'Store']) \
.select(test_df['*'], *[prefix + col for prefix in ['Before', 'After'] for col in elapsed_cols])
# Filter out zero sales.
train_df = train_df.filter(train_df.Sales > 0)
print('===================')
print('Prepared data frame')
print('===================')
train_df.show()
categorical_cols = [
'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week', 'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',
'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear', 'Promo2SinceYear', 'Events', 'Promo',
'StateHoliday', 'SchoolHoliday'
]
continuous_cols = [
'CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC', 'Min_TemperatureC', 'Max_Humidity',
'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h', 'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_de',
'BeforePromo', 'AfterPromo', 'AfterStateHoliday', 'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'
]
all_cols = categorical_cols + continuous_cols
# Select features.
train_df = train_df.select(*(all_cols + ['Sales', 'Date'])).cache()
test_df = test_df.select(*(all_cols + ['Id', 'Date'])).cache()
# Build vocabulary of categorical columns.
vocab = build_vocabulary(train_df.select(*categorical_cols)
.unionAll(test_df.select(*categorical_cols)).cache(),
categorical_cols)
# Cast continuous columns to float & lookup categorical columns.
train_df = cast_columns(train_df, continuous_cols + ['Sales'])
train_df = lookup_columns(train_df, vocab)
test_df = cast_columns(test_df, continuous_cols)
test_df = lookup_columns(test_df, vocab)
# Split into training & validation.
# Test set is in 2015, use the same period in 2014 from the training set as a validation set.
test_min_date = test_df.agg(F.min(test_df.Date)).collect()[0][0]
test_max_date = test_df.agg(F.max(test_df.Date)).collect()[0][0]
one_year = datetime.timedelta(365)
train_df = train_df.withColumn('Validation',
(train_df.Date > test_min_date - one_year) & (train_df.Date <= test_max_date - one_year))
# Determine max Sales number.
max_sales = train_df.agg(F.max(train_df.Sales)).collect()[0][0]
# Convert Sales to log domain
train_df = train_df.withColumn('Sales', F.log(train_df.Sales))
print('===================================')
print('Data frame with transformed columns')
print('===================================')
train_df.show()
print('================')
print('Data frame sizes')
print('================')
train_rows = train_df.filter(~train_df.Validation).count()
val_rows = train_df.filter(train_df.Validation).count()
test_rows = test_df.count()
print('Training: %d' % train_rows)
print('Validation: %d' % val_rows)
print('Test: %d' % test_rows)
# ============== #
# MODEL TRAINING #
# ============== #
print('==============')
print('Model training')
print('==============')
def exp_rmspe(y_true, y_pred):
"""Competition evaluation metric, expects logarithic inputs."""
pct = tf.square((tf.exp(y_true) - tf.exp(y_pred)) / tf.exp(y_true))
# Compute mean excluding stores with zero denominator.
x = tf.reduce_sum(tf.where(y_true > 0.001, pct, tf.zeros_like(pct)))
y = tf.reduce_sum(tf.where(y_true > 0.001, tf.ones_like(pct), tf.zeros_like(pct)))
return tf.sqrt(x / y)
def act_sigmoid_scaled(x):
"""Sigmoid scaled to logarithm of maximum sales scaled by 20%."""
return tf.nn.sigmoid(x) * tf.math.log(max_sales) * 1.2
CUSTOM_OBJECTS = {'exp_rmspe': exp_rmspe,
'act_sigmoid_scaled': act_sigmoid_scaled}
# Disable GPUs when building the model to prevent memory leaks
if LooseVersion(tf.__version__) >= LooseVersion('2.0.0'):
# See https://github.com/tensorflow/tensorflow/issues/33168
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
else:
K.set_session(tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})))
# Build the model.
inputs = {col: Input(shape=(1,), name=col) for col in all_cols}
embeddings = [Embedding(len(vocab[col]), 10, input_length=1, name='emb_' + col)(inputs[col])
for col in categorical_cols]
continuous_bn = Concatenate()([Reshape((1, 1), name='reshape_' + col)(inputs[col])
for col in continuous_cols])
continuous_bn = BatchNormalization()(continuous_bn)
x = Concatenate()(embeddings + [continuous_bn])
x = Flatten()(x)
x = Dense(1000, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)
x = Dense(1000, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)
x = Dense(1000, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)
x = Dense(500, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)
x = Dropout(0.5)(x)
output = Dense(1, activation=act_sigmoid_scaled)(x)
model = tf.keras.Model([inputs[f] for f in all_cols], output)
model.summary()
opt = tf.keras.optimizers.Adam(lr=args.learning_rate, epsilon=1e-3)
# Checkpoint callback to specify options for the returned Keras model
ckpt_callback = BestModelCheckpoint(monitor='val_loss', mode='auto', save_freq='epoch')
# Horovod: run training.
store = Store.create(args.work_dir)
backend = SparkBackend(num_proc=args.num_proc,
stdout=sys.stdout, stderr=sys.stderr,
prefix_output_with_timestamp=True)
keras_estimator = hvd.KerasEstimator(backend=backend,
store=store,
model=model,
optimizer=opt,
loss='mae',
metrics=[exp_rmspe],
custom_objects=CUSTOM_OBJECTS,
feature_cols=all_cols,
label_cols=['Sales'],
validation='Validation',
batch_size=args.batch_size,
epochs=args.epochs,
verbose=2,
checkpoint_callback=ckpt_callback)
keras_model = keras_estimator.fit(train_df).setOutputCols(['Sales_output'])
history = keras_model.getHistory()
best_val_rmspe = min(history['val_exp_rmspe'])
print('Best RMSPE: %f' % best_val_rmspe)
# Save the trained model.
keras_model.save(args.local_checkpoint_file)
print('Written checkpoint to %s' % args.local_checkpoint_file)
# ================ #
# FINAL PREDICTION #
# ================ #
print('================')
print('Final prediction')
print('================')
pred_df=keras_model.transform(test_df)
pred_df.printSchema()
pred_df.show(5)
# Convert from log domain to real Sales numbers
pred_df=pred_df.withColumn('Sales_pred', F.exp(pred_df.Sales_output))
submission_df = pred_df.select(pred_df.Id.cast(T.IntegerType()), pred_df.Sales_pred).toPandas()
submission_df.sort_values(by=['Id']).to_csv(args.local_submission_csv, index=False)
print('Saved predictions to %s' % args.local_submission_csv)
spark.stop()