forked from horovod/horovod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pytorch_lightning_mnist.py
211 lines (173 loc) · 7.89 KB
/
pytorch_lightning_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import os
from filelock import FileLock
import tempfile
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# import torch.utils.data.distributed
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import horovod.torch as hvd
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--data-dir',
help='location of the training dataset in the local filesystem (will be downloaded if needed)')
# Define the PyTorch model without any Horovod-specific parameters
class Net(LightningModule):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = x.float()
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, -1)
def configure_optimizers(self):
return optim.SGD(self.parameters(), lr=0.01, momentum=0.5)
def training_step(self, batch, batch_nb):
x, y = batch[0], batch[1]
y_hat = self(x)
loss = F.nll_loss(y_hat, y.long())
tensorboard_logs = {'train_loss': loss}
return {'loss': loss, 'log': tensorboard_logs}
def validation_step(self, batch, batch_nb):
x, y = batch[0], batch[1]
y_hat = self(x)
return {'val_loss': F.nll_loss(y_hat, y.long())}
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
tensorboard_logs = {'val_loss': avg_loss}
return {'avg_val_loss': avg_loss, 'log': tensorboard_logs}
def metric_average(val, name):
tensor = torch.tensor(val)
avg_tensor = hvd.allreduce(tensor, name=name)
return avg_tensor.item()
def test():
model.eval()
test_loss = 0.
test_accuracy = 0.
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
# Horovod: use test_sampler to determine the number of examples in
# this worker's partition.
test_loss /= len(test_sampler)
test_accuracy /= len(test_sampler)
# Horovod: average metric values across workers.
test_loss = metric_average(test_loss, 'avg_loss')
test_accuracy = metric_average(test_accuracy, 'avg_accuracy')
# Horovod: print output only on first rank.
if hvd.rank() == 0:
print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
test_loss, 100. * test_accuracy))
if __name__ == '__main__':
args = parser.parse_args()
torch.manual_seed(args.seed)
hvd.init()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 2}
# When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
# issues with Infiniband implementations that are not fork-safe
if (kwargs.get('num_workers', 0) > 0 and hasattr(mp, '_supports_context') and
mp._supports_context and 'forkserver' in mp.get_all_start_methods()):
kwargs['multiprocessing_context'] = 'forkserver'
# get data
data_dir = args.data_dir or './data'
with FileLock(os.path.expanduser("~/.horovod_lock")):
train_dataset = \
datasets.MNIST(data_dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# set training data loader
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
test_dataset = \
datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# set validation data loader
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
sampler=test_sampler, **kwargs)
epochs = args.epochs
with tempfile.TemporaryDirectory() as run_output_dir:
ckpt_path = os.path.join(run_output_dir, "checkpoint")
os.makedirs(ckpt_path, exist_ok=True)
logs_path = os.path.join(run_output_dir, "logger")
os.makedirs(logs_path, exist_ok=True)
logger = TensorBoardLogger(logs_path)
train_percent = 1.0
val_percent = 1.0
model = Net()
setattr(model, 'train_dataloader', lambda: train_loader)
setattr(model, 'val_dataloader', lambda: test_loader)
from pytorch_lightning.callbacks import Callback
class MyDummyCallback(Callback):
def __init__(self):
self.epcoh_end_counter = 0
self.train_epcoh_end_counter = 0
def on_init_start(self, trainer):
print('Starting to init trainer!')
def on_init_end(self, trainer):
print('Trainer is initialized.')
def on_epoch_end(self, trainer, model):
print('A epoch ended.')
self.epcoh_end_counter += 1
def on_train_epoch_end(self, trainer, model, unused=None):
print('A train epoch ended.')
self.train_epcoh_end_counter += 1
def on_train_end(self, trainer, model):
print('Training ends')
assert self.epcoh_end_counter == 2 * epochs
assert self.train_epcoh_end_counter == epochs
callbacks = [MyDummyCallback(), ModelCheckpoint(dirpath=ckpt_path)]
trainer = Trainer(accelerator='horovod',
gpus=(1 if args.cuda else 0),
callbacks=callbacks,
max_epochs=epochs,
limit_train_batches=train_percent,
limit_val_batches=val_percent,
logger=logger,
num_sanity_val_steps=0)
trainer.fit(model)
if args.cuda:
model = model.cuda()
test()