-
Notifications
You must be signed in to change notification settings - Fork 14
395 lines (390 loc) · 17.9 KB
/
push.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
name: Lint & Tests
on: [push, pull_request]
jobs:
lint-and-tests:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['3.10']
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade setuptools
pip install -e .
pip install -r requirements.opt.txt
pip install sacrebleu
pip install flake8
pip install rich
python -m pip install black==22.* flake8==3.8.*
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Check code with Black
run: |
black --check .
- name: Lint with flake8
run: |
flake8 .
- name: Unit tests
run: |
python -m unittest discover
- name: Recipes config check
run: |
python eole/tests/test_recipes.py recipes
- name: Test vocabulary build
run: |
python eole/bin/main.py build_vocab \
-config eole/tests/data/data.yaml \
-save_data /tmp/eole \
-n_sample 5000 \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
&& rm -rf /tmp/sample
- name: Test field/transform dump
run: |
# The dumped fields are used later when testing tools
python eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-save_data /tmp/eole.train.check \
-n_sample 30 \
-model '{"architecture": "rnn"}' \
-training '{"num_workers": 0, "bucket_size": 1024}' \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000
- name: Test RNN training
run: |
python eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"architecture": "rnn", "hidden_size": 10, "embeddings": {"word_vec_size": 5, "position_encoding_type": None}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10}' \
-report_every 5\
-tensorboard \
-tensorboard_log_dir /tmp/logs_train
python eole/tests/test_events.py --logdir /tmp/logs_train -tensorboard_checks train
- name: Test RNN training and validation
run: |
python eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"architecture": "rnn", "hidden_size": 10, "embeddings": {"word_vec_size": 5, "position_encoding_type": None}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "valid_steps": 5}' \
-report_every 5 \
-tensorboard \
-tensorboard_log_dir /tmp/logs_train_and_valid
python eole/tests/test_events.py --logdir /tmp/logs_train_and_valid -tensorboard_checks train
python eole/tests/test_events.py --logdir /tmp/logs_train_and_valid -tensorboard_checks valid
- name: Test RNN training with coverage
run: |
python eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-report_every 5 \
-model '{"architecture": "rnn", "hidden_size": 10, "embeddings": {"word_vec_size": 5, "position_encoding_type": None}, "decoder": {"coverage_attn": True, "lambda_coverage": 0.1}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10}'
- name: Test Transformer training with align
run: |
python eole/bin/main.py train \
-config eole/tests/data/align_data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"layers": 4, "hidden_size": 16, "transformer_ff": 64, "embeddings": {"word_vec_size": 16}, "encoder": {"encoder_type": "transformer", "heads": 2}, "decoder": {"decoder_type": "transformer", "lambda_align": 0.05, "alignment_layer": 2, "alignment_heads": 0, "heads": 2}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "dropout_steps": [0, 3, 7], "dropout": [0.3, 0.2, 0.1], "attention_dropout": [0.2, 0.2, 0.1]}' \
-report_every 5 \
- name : Test Transformer training and validation with dynamic scoring
run: |
python3 eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"layers": 4, "hidden_size": 16, "transformer_ff": 16, "embeddings": {"word_vec_size": 16, "position_encoding_type": "SinusoidalInterleaved"}, "encoder": {"encoder_type": "transformer", "heads": 2}, "decoder": {"decoder_type": "transformer", "heads": 2}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "valid_steps": 5, "accum_count": [2, 4, 8], "accum_steps": [0, 3, 7], "model_path": "/tmp/eole.model"}' \
-report_every 2 \
-valid_metrics "BLEU" "TER" \
-tensorboard \
-scoring_debug \
-tensorboard_log_dir /tmp/logs_dynamic-scoring \
-dump_preds /tmp/dump_preds
python eole/tests/test_events.py --logdir /tmp/logs_dynamic-scoring -tensorboard_checks valid_metrics
- name : Test Transformer training and validation with dynamic scoring and maxrelative
run: |
python3 eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"architecture": "transformer", "layers": 4, "heads": 2, "hidden_size": 16, "transformer_ff": 64, "embeddings": {"word_vec_size": 16, "position_encoding_type": "Relative", "n_positions": 8}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "valid_steps": 5}' \
-report_every 2 \
-valid_metrics "BLEU" "TER" \
-tensorboard \
-scoring_debug \
-tensorboard_log_dir /tmp/logs_dynamic-scoring_and_relative \
-dump_preds /tmp/dump_preds
python eole/tests/test_events.py --logdir /tmp/logs_dynamic-scoring_and_relative -tensorboard_checks valid_metrics
- name : Test Transformer training and validation with dynamic scoring and rotary
run: |
python3 eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"architecture": "transformer", "layers": 4, "heads": 2, "hidden_size": 16, "transformer_ff": 64, "embeddings": {"word_vec_size": 16, "position_encoding_type": "Rotary"}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "valid_steps": 5}' \
-report_every 2 \
-valid_metrics "BLEU" "TER" \
-tensorboard \
-scoring_debug \
-tensorboard_log_dir /tmp/logs_dynamic-scoring_and_rotary \
-dump_preds /tmp/dump_preds
python eole/tests/test_events.py --logdir /tmp/logs_dynamic-scoring_and_rotary -tensorboard_checks valid_metrics
- name : Test Transformer training and validation with dynamic scoring and alibi
run: |
python3 eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"architecture": "transformer", "layers": 4, "heads": 2, "hidden_size": 16, "transformer_ff": 64, "embeddings": {"word_vec_size": 16, "position_encoding_type": "Alibi"}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "valid_steps": 5}' \
-report_every 2 \
-valid_metrics "BLEU" "TER" \
-tensorboard \
-scoring_debug \
-tensorboard_log_dir /tmp/logs_dynamic-scoring_and_alibi \
-dump_preds /tmp/dump_preds
python eole/tests/test_events.py --logdir /tmp/logs_dynamic-scoring_and_alibi -tensorboard_checks valid_metrics
- name: Test LM training
run: |
python eole/bin/main.py train \
-config eole/tests/data/lm_data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.src \
-model '{"hidden_size": 16, "transformer_ff": 64, "embeddings": {"word_vec_size": 16}, "encoder": None, "decoder": {"decoder_type": "transformer_lm", "layers": 2, "heads": 4}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10}' \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-report_every 5
- name: Test RNN translation
run: |
head eole/tests/data/src-test.txt > /tmp/src-test.txt
python eole/bin/main.py predict \
-model_path eole/tests/test_model \
-src /tmp/src-test.txt \
-verbose
- name: Test RNN ensemble translation
run: |
head eole/tests/data/src-test.txt > /tmp/src-test.txt
python eole/bin/main.py predict \
-model_path eole/tests/test_model \
eole/tests/test_model \
-src /tmp/src-test.txt \
-verbose
- name: Test RNN translation with beam search
run: |
python eole/bin/main.py predict \
-model_path eole/tests/test_model2 \
-src eole/tests/data/morph/src.valid \
-verbose \
-batch_size 10 \
-beam_size 10 \
-tgt eole/tests/data/morph/tgt.valid \
-out /tmp/trans
diff eole/tests/data/morph/tgt.valid /tmp/trans && rm /tmp/trans
- name: Test RNN translation with random sampling
run: |
python eole/bin/main.py predict \
-model_path eole/tests/test_model2 \
-src eole/tests/data/morph/src.valid \
-verbose \
-batch_size 10 \
-beam_size 1 \
-seed 1 \
-top_k "-1" \
-temperature 0.0001 \
-tgt eole/tests/data/morph/tgt.valid \
-out /tmp/trans
diff eole/tests/data/morph/tgt.valid /tmp/trans && rm /tmp/trans
- name: Test LM generation
run: |
head eole/tests/data/src-test.txt > /tmp/src-test.txt
python eole/bin/main.py predict \
-model_path eole/tests/test_model_lm \
-src /tmp/src-test.txt \
-verbose
- name: Test LM generation with beam search
run: |
python eole/bin/main.py predict \
-model_path eole/tests/test_model_lm \
-src eole/tests/data/data_lm/src-gen.txt \
-verbose -batch_size 1 \
-beam_size 10 \
-ban_unk_token \
-length_penalty none \
-out /tmp/gen
diff eole/tests/data/data_lm/gen-beam-sol.txt /tmp/gen && rm /tmp/gen
- name: Test LM generation with random sampling
run: |
python eole/bin/main.py predict -model_path eole/tests/test_model_lm \
-src eole/tests/data/data_lm/src-gen.txt \
-verbose -batch_size 1 \
-beam_size 1 \
-seed 1 \
-top_k -1 \
-temperature 0.0001 \
-ban_unk_token \
-length_penalty none \
-out /tmp/gen
diff eole/tests/data/data_lm/gen-sampling-sol.txt /tmp/gen && rm /tmp/gen
- name: Test LM generation with random top-k/nucleus sampling
run: |
python eole/bin/main.py predict -model_path eole/tests/test_model_lm \
-src eole/tests/data/data_lm/src-gen.txt \
-verbose -batch_size 1 \
-beam_size 1 \
-seed 3 \
-top_k -1 \
-top_p 0.95 \
-temperature 1 \
-ban_unk_token \
-length_penalty none \
-out /tmp/gen
diff eole/tests/data/data_lm/gen-nucleus-sampling-sol$(python -c "import torch; print(torch.__version__[0])").txt /tmp/gen && rm /tmp/gen
- name: Test LM generation with random sampling multi-beams
run: |
python eole/bin/main.py predict -model_path eole/tests/test_model_lm \
-src eole/tests/data/data_lm/src-gen.txt \
-verbose -batch_size 1 \
-beam_size 10 \
-seed 2 \
-top_k 50 \
-top_p 0.95 \
-temperature 1 \
-length_penalty avg \
-ban_unk_token \
-min_length 5 \
-out /tmp/gen
diff eole/tests/data/data_lm/gen-sampling-beams-sol$(python -c "import torch; print(torch.__version__[0])").txt /tmp/gen && rm /tmp/gen
- name: Test py-LM inference engine
run: |
head eole/tests/data/src-test.txt > /tmp/src-test.txt
python eole/tests/test_inference_engines.py \
-model eole/tests/test_model_lm \
-model_type decoder \
-input_file /tmp/src-test.txt \
-inference_config_file eole/tests/data/inference-engine_py.yaml \
-out /tmp/inference_engine_lm_py_outputs
- name: Test ct2-LM inference engine
run: |
head eole/tests/data/src-test.txt > /tmp/src-test.txt
python eole/tests/test_inference_engines.py \
-model eole/tests \
-model_type decoder \
-input_file /tmp/src-test.txt \
-inference_config_file eole/tests/data/inference-engine_py.yaml \
-engine ct2 \
-out /tmp/inference_engine_lm_py_outputs
- name: Test py-SEQ2SEQ inference engine
run: |
head eole/tests/data/src-test.txt > /tmp/src-test.txt
python eole/tests/test_inference_engines.py \
-model eole/tests/test_model \
-model_type encoder_decoder \
-input_file /tmp/src-test.txt \
-inference_config_file eole/tests/data/inference-engine_py.yaml \
-out /tmp/inference_engine_lm_py_outputs
- name: Test embeddings_to_torch tool
run: |
python eole/bin/main.py tools embeddings_to_torch \
-emb_file_enc eole/tests/sample_glove.txt \
-emb_file_dec eole/tests/sample_glove.txt \
-model_path eole/tests/test_model \
-output_file /tmp/q_gloveembeddings \
&& rm /tmp/q_gloveembeddings*
- name: Test extract_embeddings tool
run: |
python eole/bin/main.py model extract_embeddings \
-model eole/tests/test_model
- name: Test checkpoint vocabulary update
run: |
python eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-model '{"architecture": "rnn", "hidden_size": 10, "embeddings": {"word_vec_size": 5, "position_encoding_type": None}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "model_path": "/tmp/eole.model", "save_checkpoint_steps": 10}' \
-report_every 5
sed -i '1s/^/new_tok\t100000000\n/' /tmp/eole.vocab.src
python eole/bin/main.py train \
-config eole/tests/data/data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.tgt \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 20, "train_from": "/tmp/eole.model/step_10", "save_checkpoint_steps": 10, "update_vocab": True, "reset_optim": "states"}' \
-report_every 5
- name: Test checkpoint vocabulary update with LM
run: |
python eole/bin/main.py train \
-config eole/tests/data/lm_data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.src \
-model '{"layers": 2, "hidden_size": 16, "transformer_ff": 64, "embeddings": {"word_vec_size": 16}, "encoder": None, "decoder": {"decoder_type": "transformer_lm", "heads": 4}}' \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 10, "model_path": "/tmp/lm.eole.model", "save_checkpoint_steps": 10}' \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-report_every 5
sed -i '1s/^/new_tok2\t100000000\n/' /tmp/eole.vocab.src
python eole/bin/main.py train \
-config eole/tests/data/lm_data.yaml \
-src_vocab /tmp/eole.vocab.src \
-tgt_vocab /tmp/eole.vocab.src \
-training '{"batch_size": 10, "num_workers": 0, "bucket_size": 1024, "train_steps": 20, "train_from": "/tmp/lm.eole.model/step_10", "save_checkpoint_steps": 10, "update_vocab": True, "reset_optim": "states"}' \
-src_vocab_size 1000 \
-tgt_vocab_size 1000 \
-report_every 5
build-docs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.10
uses: actions/setup-python@v2
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade setuptools
pip install -e .
pip install -r docs/requirements.txt
pip install -r requirements.opt.txt
pip install rich
- name: Build docs
run: |
set -e
# Check that docs are built without errors
cd docs/ && make html && cd ..