-
Notifications
You must be signed in to change notification settings - Fork 7
/
attacks.py
359 lines (295 loc) · 13.2 KB
/
attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import math
import torch
import torch.nn.functional as F
import numpy as np
import random
def no_byz(v, net, lr, f, device):
"""
No attack is performed therefore the gradients are simply returned.
v: list of gradients
net: model
lr: learning rate
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
return v
def trim_attack(v, net, lr, f, device):
"""
Local model poisoning attack against the trimmed mean aggregation rule.
Based on the description in https://arxiv.org/abs/1911.11815
v: list of gradients
net: model
lr: learning rate
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
vi_shape = tuple(v[0].size())
v_tran = torch.cat(v, dim=1)
maximum_dim, _ = torch.max(v_tran, dim=1, keepdim=True)
minimum_dim, _ = torch.min(v_tran, dim=1, keepdim=True)
direction = torch.sign(torch.sum(torch.cat(v, dim=1), dim=-1, keepdim=True))
directed_dim = (direction > 0) * minimum_dim + (direction < 0) * maximum_dim
# let the malicious clients (first f clients) perform the attack
for i in range(f):
random_12 = (1. + torch.rand(*vi_shape)).to(device)
v[i] = directed_dim * ((direction * directed_dim > 0) / random_12 + (direction * directed_dim < 0) * random_12)
return v
def krum_attack(v, net, lr, f, device):
"""
Local model poisoning attack against the krum aggregation rule.
Based on the description in https://arxiv.org/abs/1911.11815
v: list of gradients
net: model
lr: learning rate
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
threshold = 1e-5
n = len(v)
w_re = torch.cat([xx.reshape((-1, 1)) for xx in net.parameters()], dim=0)
d = v[0].size()[0]
dist = torch.zeros((n, n)).to(device)
for i in range(n): # compute euclidean distance of benign to benign devices
for j in range(i + 1, n):
d = torch.norm(lr * v[i] - lr * v[j], p=2)
dist[i, j], dist[j, i] = d, d
dist_benign_sorted, _ = torch.sort(dist[f:, f:])
min_dist = torch.min(torch.sum(dist_benign_sorted[:, 0:(n - f - 1)], dim=-1))
dist_w_re = []
for i in range(f, n):
dist_w_re.append(torch.norm(lr * v[i], p=2))
max_dist_w_re = torch.max(torch.stack(dist_w_re))
max_lambda = min_dist / ((n - 2 * f - 1) * torch.sqrt(d)) + max_dist_w_re / torch.sqrt(d)
actual_lambda = max_lambda
sorted_dist, _ = torch.sort(dist, dim=-1)
update_before = v[torch.argmin(torch.sum(sorted_dist[:, 0:(n - f - 1)], dim=-1))]
while actual_lambda > threshold:
for i in range(f):
v[i] = - actual_lambda * torch.sign(update_before)
dist = torch.zeros((n, n)).to(device)
for i in range(n):
for j in range(i + 1, n):
d = torch.norm(v[i] - v[j])
dist[i, j], dist[j, i] = d, d
sorted_dist, _ = torch.sort(dist, dim=-1)
global_update = v[torch.argmin(torch.sum(sorted_dist[:, 0:(n - f - 1)], dim=-1))]
if torch.equal(global_update, v[0]):
break
else:
actual_lambda = actual_lambda / 2
return v
def fltrust_attack(v, net, lr, f, device):
"""
Local model poisoning attack against the fltrust aggregation rule.
Based on the specification in https://arxiv.org/abs/2012.13995 originally named adaptive attack.
v: list of gradients
net: model
lr: learning rate
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
norm_p = 2.0 # Euclidean norm
n = len(v) - 1
V = 10
Q = 10
std = 0.5 # sigma^2
gamma = 0.005
eta = 0.01
eps = 1e-9
e = [v[i] / torch.norm(v[i], p=norm_p) for i in range(n)]
e_0 = v[-1] / torch.norm(v[-1], p=norm_p)
c = [torch.dot(torch.squeeze(e_i), torch.squeeze(e_0)) for e_i in e]
sum_c_i = torch.sum(F.relu(torch.stack(c))) + eps
temp = [F.relu(c[i]) / sum_c_i * e[i] for i in range(n)]
weighted_sum_e = torch.sum(torch.cat(temp, dim=1), dim=1, keepdim=True)
norm_g_0 = torch.norm(v[-1], p=norm_p)
g = norm_g_0 * weighted_sum_e
s = torch.sign(g)
v_prime = trim_attack(v.copy(), net, lr, f, device)[0:f]
e_prime = [v_prime_i / torch.norm(v_prime_i, p=norm_p) for v_prime_i in v_prime]
def h(e_prime_prime):
c_prime = [torch.dot(torch.squeeze(e_prime_i), torch.squeeze(e_0)) for e_prime_i in e_prime_prime]
sum_c_prime = torch.sum(F.relu(torch.stack(c_prime))) + torch.sum(F.relu(torch.stack(c[f:]))) + eps
model_difference = (weighted_sum_e
- torch.sum(
torch.cat([F.relu(c_prime[j]) * e_prime_prime[j] / sum_c_prime for j in range(0, f)], dim=-1),
dim=1, keepdim=True)
- torch.sum(torch.cat([F.relu(c[j]) * e[j] / sum_c_prime for j in range(f, n)], dim=-1),
dim=1, keepdim=True))
return norm_g_0 * torch.dot(torch.squeeze(s), torch.squeeze(model_difference))
for _ in range(V):
for i in range(f):
for t in range(Q):
u = torch.normal(mean=0, std=std, size=tuple(v[0].size())).to(device)
grad_h = (h([e_prime[j] + gamma * u if j == i else e_prime[j] for j in range(f)]) - h(
e_prime)) / gamma * u
e_prime[i] = e_prime[i] + eta * grad_h
e_prime[i] = e_prime[i] / torch.norm(e_prime[i], p=norm_p)
for i in range(f):
v[i] = e_prime[i] * norm_g_0
return v
def min_max_attack(v, net, lr, f, device):
"""
Local model poisoning attack from https://par.nsf.gov/servlets/purl/10286354
The implementation is based of their repository (https://github.com/vrt1shjwlkr/NDSS21-Model-Poisoning)
but refactored for clarity.
v: list of gradients
net: model
lr: learning rate
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
catv = torch.cat(v, dim=1)
grad_mean = torch.mean(catv, dim=1)
deviation = grad_mean / torch.norm(grad_mean, p=2) # decided to use unit_vec distance which was their default
# but they also had the option to use sign and standard deviation
gamma = torch.Tensor([50.0]).float().to(device)
threshold_diff = 1e-5
gamma_fail = gamma
gamma_succ = 0
distances = []
for update in v:
distance = torch.norm(catv - update, dim=1, p=2) ** 2
distances = distance[None, :] if not len(distances) else torch.cat((distances, distance[None, :]), 0)
max_distance = torch.max(distances) # determine max distance left side of optimization
del distances
# finding optimal gamma according to algorithm 1
while torch.abs(gamma_succ - gamma) > threshold_diff:
mal_update = (grad_mean - gamma * deviation)
distance = torch.norm(catv - mal_update[:, None], dim=1, p=2) ** 2
max_d = torch.max(distance)
if max_d <= max_distance:
gamma_succ = gamma
gamma = gamma + gamma_fail / 2
else:
gamma = gamma - gamma_fail / 2
gamma_fail = gamma_fail / 2
mal_update = (grad_mean - gamma_succ * deviation)
for i in range(f):
v[i] = mal_update[:, None]
return v
def min_sum_attack(v, net, lr, f, device):
"""
Local model poisoning attack from https://par.nsf.gov/servlets/purl/10286354
The implementation is based of their repository (https://github.com/vrt1shjwlkr/NDSS21-Model-Poisoning)
but refactored for clarity.
v: list of gradients
net: model
lr: learning rate
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
catv = torch.cat(v, dim=1)
grad_mean = torch.mean(catv, dim=1)
deviation = grad_mean / torch.norm(grad_mean, p=2) # decided to use unit_vec distance which was their default
# but they also had the option to use sign and standard deviation
gamma = torch.Tensor([50.0]).float().to(device)
threshold_diff = 1e-5
gamma_fail = gamma
gamma_succ = 0
distances = []
for update in v:
distance = torch.norm(catv - update, dim=1, p=2) ** 2
distances = distance[None, :] if not len(distances) else torch.cat((distances, distance[None, :]), 0)
scores = torch.sum(distances, dim=1)
min_score = torch.min(scores)
del distances
# finding optimal gamma according to algorithm 1
while torch.abs(gamma_succ - gamma) > threshold_diff:
mal_update = (grad_mean - gamma * deviation)
distance = torch.norm(catv - mal_update[:, None], dim=1, p=2) ** 2
score = torch.sum(distance)
if score <= min_score:
gamma_succ = gamma
gamma = gamma + gamma_fail / 2
else:
gamma = gamma - gamma_fail / 2
gamma_fail = gamma_fail / 2
mal_update = (grad_mean - gamma_succ * deviation)
for i in range(f):
v[i] = mal_update[:, None]
return v
def label_flipping_attack(each_worker_label, f, num_labels):
"""
Data poisoning attack which changes the labels of the training data on the malicious clients.
each_worker_label: data labels of workers
f: number of malicious clients, where the first f are malicious
num_labels: highest label number
"""
for i in range(f):
each_worker_label[i] = num_labels - each_worker_label[i] - 1
return each_worker_label
def scaling_attack_insert_backdoor(each_worker_data, each_worker_label, dataset, f, device):
"""
Data poisoning attack which inserts backdoor patterns into the training data on the malicious clients.
The attack is based on the description in https://arxiv.org/abs/2012.13995
The trigger pattern is from https://arxiv.org/abs/1708.06733
each_worker_data: data of each worker
each_worker_label: labels of the data of each worker
dataset: name of the dataset used in training
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
if dataset == "HAR":
attacker_chosen_target_label = 1
for i in range(f):
p = 1 - np.random.rand(1)[0] # sample random number from (0,1]
number_of_backdoored_images = math.ceil(p * each_worker_data[i].size(dim=0))
benign_images = each_worker_data[i].size(dim=0)
# expand list of images with number of backdoored images and copy all benign images
expanded_data = torch.zeros(benign_images + number_of_backdoored_images,
each_worker_data[i].size(dim=1)).to(device)
for n in range(benign_images):
expanded_data[n] = each_worker_data[i][n]
# duplicate images and add pattern trigger
for j in range(number_of_backdoored_images):
# Currently first image is selected every time
random_number = random.randrange(0, each_worker_data[i].size(dim=0))
backdoor = each_worker_data[i][random_number, :]
for k in range(len(backdoor)):
if (k + 1) % 20 == 0:
backdoor[k] = 0
expanded_data[benign_images + j] = backdoor
# replace data of compromised worker with expanded data
each_worker_data[i] = expanded_data
# expand list of labels with number of backdoored images with attacker chosen target label
each_worker_label[i] = torch.tensor(each_worker_label[i].tolist() +
[attacker_chosen_target_label for i in range(number_of_backdoored_images)]).to(device)
else:
raise NotImplementedError
return each_worker_data, each_worker_label
def scaling_attack_scale(v, net, lr, f, device):
"""
Second part of the scaling attack which scales the gradients of the malicious clients to increase their impact.
The attack is based on the description in https://arxiv.org/abs/2012.13995
v: list of gradients
net: model
lr: learning rate
f: number of malicious clients, where the first f are malicious
device: device used in training and inference
"""
scaling_factor = len(v)
for i in range(f):
v[i] = v[i] * scaling_factor
return v
def add_backdoor(data, labels, dataset):
"""
Adds backdoor to a provided list of data examples.
The trigger pattern is from https://arxiv.org/abs/1708.06733
data: list data examples
labels: list of the labels of data
dataset: name of the dataset from which data was sampled
"""
if dataset == "HAR":
attacker_chosen_target_label = 1
# add pattern trigger
for i in range(data.size(dim=0)):
for k in range(data.size(dim=1)):
if (k + 1) % 20 == 0:
data[i][k] = 0
# expand list of labels with number of backdoored images with attacker chosen target label
for i in range(len(labels)):
labels[i] = attacker_chosen_target_label
else:
raise NotImplementedError
return data, labels