-
Notifications
You must be signed in to change notification settings - Fork 7
/
aggregation_rules.py
938 lines (767 loc) · 38.1 KB
/
aggregation_rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
import attacks
import math
import os
import collections
from functools import reduce
import torch
import torch.nn.functional as F
import numpy as np
from scipy.stats import pearsonr
from sklearn.cluster import KMeans
import hdbscan
import copy
import utils
# Copyright (c) 2015, Leland McInnes
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Available at: https://github.com/scikit-learn-contrib/hdbscan
def fltrust(gradients, net, lr, f, byz, device):
"""
Based on the description in https://arxiv.org/abs/2012.13995
gradients: list of gradients. The last one is the server update.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
param_list = byz(param_list, net, lr, f, device)
n = len(param_list) - 1
# use the last gradient (server update) as the trusted source
baseline = param_list[-1].squeeze()
sim = []
new_param_list = []
# compute similarity
for each_param_list in param_list:
each_param_array = each_param_list.squeeze()
sim.append(torch.dot(baseline, each_param_array) / (torch.norm(baseline) + 1e-9) / (
torch.norm(each_param_array) + 1e-9))
sim = torch.stack(sim)[:-1]
# clip similarities and get trust scores
sim = F.relu(sim)
normalized_weights = sim / (torch.sum(sim).item() + 1e-9)
# normalize the magnitudes and weight by the trust score
for i in range(n):
new_param_list.append(
param_list[i] * normalized_weights[i] / (torch.norm(param_list[i]) + 1e-9) * torch.norm(baseline))
# compute global update
global_update = torch.sum(torch.cat(new_param_list, dim=1), dim=-1)
# update global model
idx = 0
for j, (param) in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def fedavg(gradients, net, lr, f, byz, device, data_sizes):
"""
Based on the description in https://arxiv.org/abs/1602.05629
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
data_size: amount of training data of each worker device
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
total_data_size = sum(data_sizes)
# compute global model update
global_update = torch.zeros(param_list[0].size()).to(device)
for i, grad in enumerate(param_list):
global_update += grad * data_sizes[i]
global_update /= total_data_size
# update the global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def krum(gradients, net, lr, f, byz, device):
"""
Based on the description in https://papers.nips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
# compute pairwise Euclidean distance
dist = torch.zeros((n, n)).to(device)
for i in range(n):
for j in range(i + 1, n):
d = torch.norm(param_list[i] - param_list[j])
dist[i, j], dist[j, i] = d, d
# sort distances and get model with smallest sum of distances to closest n-f-2 models
sorted_dist, _ = torch.sort(dist, dim=-1)
global_update = param_list[torch.argmin(torch.sum(sorted_dist[:, 0:(n - f - 1)], dim=-1))]
# update global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def trim_mean(gradients, net, lr, f, byz, device):
"""
Based on the description in https://arxiv.org/abs/1803.01498
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
# trim f biggest and smallest values of gradients
sorted, _ = torch.sort(torch.cat(param_list, dim=1), dim=-1)
global_update = torch.mean(sorted[:, f:(n - f)], dim=-1)
# update the global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def median(gradients, net, lr, f, byz, device):
"""
Based on the description in https://arxiv.org/abs/1803.01498
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
# compute median of gradients
global_update, _ = torch.median(torch.cat(param_list, dim=1), dim=-1)
# update global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def flame(gradients, net, lr, f, byz, device, epsilon, delta):
"""
Based on the description in https://arxiv.org/abs/2101.02281
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
epsilon: parameter for differential privacy
delta: parameter for differential privacy
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
# compute pairwise cosine distances
cos_dist = torch.zeros((n, n), dtype=torch.double).to(device)
for i in range(n):
for j in range(i + 1, n):
d = 1 - F.cosine_similarity(param_list[i], param_list[j], dim=0, eps=1e-9)
cos_dist[i, j], cos_dist[j, i] = d, d
# clustering of gradients
np_cos_dist = cos_dist.cpu().numpy()
clusterer = hdbscan.HDBSCAN(metric='precomputed', min_samples=1, min_cluster_size=(n // 2) + 1,
cluster_selection_epsilon=0.0, allow_single_cluster=True).fit(np_cos_dist)
# compute clipping bound
euclid_dist = []
for grad in param_list:
euclid_dist.append(torch.norm(lr * grad, p=2))
clipping_bound, _ = torch.median(torch.stack(euclid_dist).reshape((-1, 1)), dim=0)
# gradient clipping
clipped_gradients = []
for i in range(n):
if clusterer.labels_[i] == 0:
gamma = clipping_bound / euclid_dist[i]
clipped_gradients.append(-lr * param_list[i] * torch.min(torch.ones((1,)).to(device), gamma))
# aggregation
global_update = torch.mean(torch.cat(clipped_gradients, dim=1), dim=-1)
# adaptive noise
std = (clipping_bound * np.sqrt(2 * np.log(1.25 / delta)) / epsilon) ** 2
global_update += torch.normal(mean=0, std=std.item(), size=tuple(global_update.size())).to(device)
# update the global model
idx = 0
for j, (param) in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())))
idx += torch.numel(param)
def shieldfl(gradients, net, lr, f, byz, device, previous_gloabl_gradient, iteration, previous_gradients):
"""
Based on the description in https://ieeexplore.ieee.org/document/9762272
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
previous_global_gradient: global model updated of the previous
iteration: iteration of training process
previous_gradient: local model updates of previous iteration
"""
kappa = 0 # the paper gave no indication on how to set this parameter
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
copy_params = [param.clone() for param in param_list]
# gradient normalization
for i in range(f, n): # benign workers always normalize their gradients
if iteration == 0: # emulate selective SGD
over_threshold = (param_list[i] >= kappa)
else:
over_threshold = torch.logical_or((param_list[i] >= kappa),
((param_list[i] - previous_gradients[i]) >= kappa))
param_list[i] = over_threshold * param_list[i]
max_value = torch.max(param_list[i])
min_value = torch.min(param_list[i])
param_list[i] = (param_list[i] - min_value) / (max_value - min_value) # normalize to [0, 1]
param_list[i] = param_list[i] / torch.norm(param_list[i], p=2.0) # normalize with Euclidean norm
for i in range(0, f): # ASSUMPTION: byzantine workers know that ShieldFL is used and normalize their gradients
max_value = torch.max(param_list[i])
min_value = torch.min(param_list[i])
param_list[i] = (param_list[i] - min_value) / (max_value - min_value) # normalize to [0, 1]
param_list[i] = param_list[i] / torch.norm(param_list[i], p=2.0) # normalize with Euclidean norm
if (iteration == 0): # if there is no prev gradient
previous_gloabl_gradient = torch.mean(torch.cat(param_list, dim=1), dim=-1, keepdim=True)
checked_gradients = []
cos_sim = []
for param in param_list: # check if gradients are normalized
sum = torch.sum(torch.square(param)) # emulates secure judgement
if (math.isclose(sum.item(), 1.0, rel_tol=1e-05, abs_tol=1e-08)):
checked_gradients.append(param)
cos_sim.append(F.cosine_similarity(param, previous_gloabl_gradient, dim=0,
eps=1e-9)) # emulates secure cosine similarity
poison_baseline = checked_gradients[torch.argmin(torch.stack(cos_sim))] # find poison baseline gradient
cos_sim_poison = []
for grad in checked_gradients: # compute cos_sim to poison baseline gradient
cos_sim_poison.append(F.cosine_similarity(grad, poison_baseline, dim=0, eps=1e-9))
cos_sim_poison = torch.stack(cos_sim_poison)
confidence = torch.ones(cos_sim_poison.size()).to(device) - cos_sim_poison
normalized_conf = F.normalize(confidence, p=1, dim=0,
eps=1e-12) # normalized confidence passed on cos_sim to poison baseline gradient
# compute global update
global_update = torch.zeros(checked_gradients[0].size()).to(device)
for i, grad in enumerate(checked_gradients): # aggregate all gradients
global_update += grad * normalized_conf[i]
# update the global model
idx = 0
for j, (param) in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
return global_update, copy_params # return gradients of gobal model and local models for next iteration of iteration
def flod(gradients, net, lr, f, byz, device, threshold):
"""
Based on the description in https://eprint.iacr.org/2021/993
gradients: list of gradients. The last one is the server update.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
threshold: parameter for clipping weights
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
param_list = byz(param_list, net, lr, f, device)
n = len(param_list) - 1
# sgn encoding
sgn_param_list = []
for param in param_list:
sgn_param_list.append(torch.sign(param))
# boolean encoding
bool_param_list = []
for param in sgn_param_list:
bool_param_list.append(param == 1)
# hamming distance
hd = []
baseline = bool_param_list[-1]
for i in range(n):
hd.append(torch.sum(torch.bitwise_xor(bool_param_list[i], baseline)))
# tau-clipping
weight = [F.relu(threshold - hd_i) for hd_i in hd]
# compute global update
global_update = torch.zeros(sgn_param_list[0].size()).to(device)
for i in range(n):
global_update += weight[i] * sgn_param_list[i]
weight_sum = torch.sum(torch.stack(weight))
if weight_sum > 0:
global_update /= weight_sum
# update the global model
idx = 0
for j, (param) in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def divide_and_conquer(gradients, net, lr, f, byz, device, niters, c, b):
"""
The divide and conquer aggregation rule defined in https://www.ndss-symposium.org/wp-content/uploads/ndss2021_6C-3_24498_paper.pdf
gradients: list of gradients. The last one is the server update.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
threshold: parameter for clipping weights
niters: number of iterations to compute good sets
c: filtering fraction, percentage of number of malicious clients filtered
b: dimension of subsamples must be smaller, then the dimension of the gradients
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
param_list = byz(param_list, net, lr, f, device)
good_set = list()
for i in range(niters):
random_dimension = np.random.randint(1, high=b, dtype=int)
r_mask = torch.tensor([True if i < random_dimension else False for i in range(len(param_list[0]))])
r_mask = r_mask[torch.randperm(len(param_list[0]))].to(device)[:, None] # craft random selection of random number of parameters
selected_gradients = [torch.masked_select(param_list[i], r_mask)[:, None] for i in range(len(param_list))]
mean = torch.mean(torch.cat(selected_gradients, dim=-1), dim=-1)[:, None]
selected_gradients = torch.sub(torch.cat(selected_gradients, dim=-1), mean).T # center gradients and
# transpose to match dimension to their implementation
_, _, rightSingular = torch.linalg.svd(selected_gradients, full_matrices=False) # compute top right singular eigenvector
topeigen = rightSingular[0, :] # rows of v are ordered right singular vectors
outlier_score = [torch.dot(selected_gradients[i], topeigen).item()**2 for i in range(len(param_list))]
# this is my assumption because their algorithm would compute the dot product of full gradient with topeigen
# which would have different dimensions and therefore can not be computed
sorted_indices = np.argsort(outlier_score)[0:int(len(param_list)-f*c)] # this assumes that the aggregation knows
# the actual number of malicious clients
good_set.append(sorted_indices)
good_indices = reduce(np.intersect1d, good_set)
if len(good_indices) == 0:
print("No good gradients found this round. Consider lowering c or niters")
return # No update this round
x = torch.cat([param_list[i] for i in good_indices], dim=-1)
global_update = torch.mean(x, dim=-1)
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def mpspdz_aggregation(gradients, net, lr, f, byz, device, param_num, port, chunk_size, parties):
"""
gradients: list of gradients. The last one is the server update.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
param_num: number of parameters per gradient
port: port computation parties are listing on
chunk_size: amount of values submitted at one time
parties: number of computation parties
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
param_list_python = torch.reshape(torch.cat(param_list, dim=0), (-1,)).tolist() # convert tensors to list
import mpspdz.ExternalIO.mpc_client as m
os.chdir("mpspdz")
output = m.client(0, parties, port, param_num, n, chunk_size, param_list_python, precision=12)
os.chdir("..")
global_update = torch.tensor(output).to(device) # convert python list to tensor
# update global model
idx = 0
for j, (param) in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def foolsgold(gradients, net, lr, f, byz, device, gradient_history):
"""
Based on the description in https://arxiv.org/abs/1808.04866
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
gradient_history: aggregation of previous gradients per worker.
"""
# reference implementation: https://github.com/DistributedML/FoolsGold
# FoolsGold has individual learning rates. Global learning rate lr has no effect
kappa = 1
eps = 10e-5
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
for i in range(n):
norm = torch.norm(param_list[i])
if(norm > 1):
param_list[i] /= norm
# updates history
gradient_history = [gradient_history[i] + param_list[i] for i in range(n)]
cos_dist = torch.zeros((n, n), dtype=torch.double).to(device)
for i in range(n):
for j in range(i + 1, n):
d = F.cosine_similarity(gradient_history[i], gradient_history[j], dim=0, eps=1e-9)
cos_dist[i, j], cos_dist[j, i] = d, d
v, _ = torch.max(cos_dist, dim=1)
# pardoning
for i in range(n):
for j in range(n):
if v[j] > v[i]:
cos_dist[i][j] *= v[i]/v[j]
alpha = torch.clamp(1 - torch.max(cos_dist, dim=1)[0], min=0, max=1)
# logit function
alpha /= torch.max(alpha, dim=0, keepdim=True)[0]
alpha = kappa * (torch.logit(alpha, eps=eps) + 0.5)
alpha = torch.clamp(alpha, min=0, max=1)
# calculate global update
global_update = torch.zeros(param_list[0].size()).to(device)
for i, grad in enumerate(param_list):
global_update += grad * alpha[i]
# update the global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-1) # FoolsGold uses individual learning rates
idx += torch.numel(param)
return gradient_history
def contra(gradients, net, lr, f, byz, device, gradient_history, reputation, cos_dist, C=1):
"""
Based on the description in https://par.nsf.gov/servlets/purl/10294585
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
gradient_history: aggregation of previous gradients per worker.
reputation: reputation of each worker.
cos_dist: pairwise cosine similarity
C: fraction of clients to select
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
# parameters
lambda_reputation = C * (C - 1) # lambda to adjust probability
J = int(C * n) # no. of clients selected in each round
k = n - f - 1 # top-k cosine similarities
big_delta = 0.1 # defaults: 0.1 for image classification, 0.05 loan dataset
t = 0 # some arbitrary threshold with no information on how to set it in paper
eps = 1e-5
probability = C + lambda_reputation * reputation
selected_clients = torch.topk(probability, J)[1] # only needing indices, not actual values
# updates history
gradient_history = [(gradient_history[i] + param_list[i] if (i in selected_clients) else gradient_history[i]) for i in range(n)]
# compute pairwise cosine similarity
for i in range(n):
if not i in selected_clients: # skip not selected clients
continue
for j in range(i + 1, n):
d = F.cosine_similarity(gradient_history[i], gradient_history[j], dim=0, eps=1e-9)
cos_dist[i, j], cos_dist[j, i] = d, d
# compute alignment level
tau = torch.mean(torch.topk(cos_dist, k, dim=1)[0], dim=1).to(device)
reputation = torch.where(tau > t, reputation + big_delta, reputation - big_delta) # reweighting reputation
# re-weighting cosine similarity
for i in range(n):
for j in range(n):
if tau[j] > tau[i]:
cos_dist[i][j] *= tau[i]/tau[j]
lr_m = 1 - tau
reputation /= torch.max(reputation, dim=0, keepdim=True)[0] # re-weight to [0, 1]
lr_m /= torch.max(lr_m, dim=0, keepdim=True)[0] # re-weight to [0, 1]
lr_m = torch.clamp(torch.logit(lr_m, eps=eps) + 0.5, min=0, max=1) # clamping just like in FoolsGold, no information if that is correct
# compute global model update
global_update = torch.zeros(param_list[0].size()).to(device)
for i, grad in enumerate(param_list):
global_update += grad * lr_m[i]
# update the global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
return gradient_history, reputation, cos_dist
def signguard(gradients, net, lr, f, byz, device, seed):
"""
Based on the description in https://arxiv.org/abs/2109.05872
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
seed: seed for randomness
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
num_params = param_list[0].size(0)
selection_fraction = 0.1
# lower and upper bound L,R for gradient norm
L = 0.1
R = 3.0
S1 = []
S2 = []
# compute l2-norm
l2_norm = torch.stack([torch.norm(g.flatten(), p=2.0) for g in param_list])
# compute element wise sign
num_selection = int(num_params * selection_fraction)
perm = torch.randperm(num_params)
idx = perm[:num_selection]
sign_grads = [torch.sign(g[idx]) for g in param_list]
# norm-threshold filtering
M = torch.median(l2_norm)
for i in range(n):
if L <= l2_norm[i] / M and l2_norm[i] / M <= R:
S1.append(i)
# compute sign statistics
sign_pos = torch.stack([grad.eq(1.0).float().mean() for grad in sign_grads])
sign_zero = torch.stack([grad.eq(0.0).float().mean() for grad in sign_grads])
sign_neg = torch.stack([grad.eq(-1.0).float().mean() for grad in sign_grads])
# sign-based clustering
sign_feat = torch.stack([sign_pos, sign_zero, sign_neg], dim=1).detach().cpu().numpy()
cluster = KMeans(n_clusters=2, max_iter=20, random_state=seed)
labels = cluster.fit_predict(sign_feat)
labels_tensor = torch.from_numpy(labels).to(device)
count = torch.bincount(labels_tensor)
largest_cluster = torch.argmax(count)
for i, value in enumerate(labels_tensor):
if value == largest_cluster:
S2.append(i)
# compute intersection of S1 and S2
S = [i for i in S1 if i in S2]
# global update
global_update = torch.zeros(param_list[0].size()).to(device)
for i in S:
global_update += param_list[i]
global_update *= 1 / len(S)
# update the global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def flare(gradients, net, lr, f, byz, device, server_data):
"""
Based on the description in https://dl.acm.org/doi/10.1145/3488932.3517395
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
"""
grad_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
grad_list = byz(grad_list, net, lr, f, device)
nclients = len(grad_list)
# Create models for each client to determine penultimate layer representation PLR of auxiliary data (server dataset)
plrs = []
for client in range(nclients):
localmodel = copy.deepcopy(net)
for j, param in enumerate(localmodel.parameters()):
param.add_(gradients[client][j], alpha=-1) # alpha -1 for gradient descent
localmodel.eval() # activate eval mode
modelPLR = localmodel(server_data)
plrs.append(modelPLR)
# compute maximum mean discrepancy MMD between PLRs of clients
mmds = torch.zeros((nclients, nclients))
for client in range(nclients):
for otherClient in range(client, nclients):
mmds[otherClient][client] = mmds[client][otherClient] = utils.MMD(plrs[client], plrs[otherClient], device)
# get k nearest neighbors to each client based on MMD
k = round(0.5 * nclients)
neighbors = torch.zeros(nclients, k, dtype=torch.int)
for client in range(nclients):
neighbors[client] = torch.argsort(mmds[client])[0:k]
# count times client is selected as neighbor
counts = torch.zeros(nclients, dtype=torch.int)
for row in neighbors:
for value in row:
counts[value.item()] += 1
counts = torch.exp(counts)
sumCounts = torch.sum(counts)
# compute global update
new_param_list = []
for i in range(nclients):
new_param_list.append(
grad_list[i] * counts[i] / (sumCounts + 1e-9))
global_update = torch.sum(torch.cat(new_param_list, dim=1), dim=-1)
idx = 0
for j, (param) in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
def romoa(gradients, net, lr, f, byz, device, F, prev_global_update, seed): # adapted from the original implementation provided by the authors
"""
Based on the description in https://link.springer.com/chapter/10.1007/978-3-030-88418-5_23
gradients: list of gradients.
net: model parameters.
lr: learning rate.
f: number of malicious clients. The first f clients are malicious.
byz: attack type.
device: computation device.
F: sanitization factors of last epoch
prev_global_update: previous global update
seed: seed for random number generator
"""
param_list = [torch.cat([xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients]
# let the malicious clients (first f clients) perform the byzantine attack
if byz == attacks.fltrust_attack:
param_list = byz(param_list, net, lr, f, device)[:-1]
else:
param_list = byz(param_list, net, lr, f, device)
n = len(param_list)
num_params = param_list[0].size(0)
beta = 0.5
gamma = 1/n
# offsets for parameters of each layer/tensor
offset = [0]
for i, t in enumerate(gradients[0]):
offset.append(offset[i] + torch.numel(t))
### parameter selection
# whole parameter selection
num_select = int(gamma * num_params)
indices = [torch.topk(torch.abs(params.flatten()), k=num_select, sorted=False)[1] for params in param_list] # indices of large garidents for each client
element_level_idx = torch.unique(torch.cat(indices, dim=0)) # combining all indices and filtering out duplicates
# layer-wise parameter selection
layer_level_idx = []
for i, j in zip(offset, offset[1:]):
num_select = max(int(gamma * (j - i)), 1)
indices = [torch.topk(torch.abs(params.flatten()[i:j]), k=num_select, sorted=False)[1] for params in param_list]
layer_level_idx.append(torch.unique(torch.cat(indices, dim=0)))
### distance caluclations
prev_global_update = prev_global_update.reshape(-1, 1)
grad_mean, _ = torch.median(torch.stack(param_list, dim=1), dim=1)
# element-wise cosine similarity
cosine_element = torch.empty(size=(n, element_level_idx.size(0))).to(device)
w0 = prev_global_update[element_level_idx]
w1 = grad_mean[element_level_idx]
v0 = torch.cat([w0, w1], dim=1)
for i, grad in enumerate(param_list):
w2 = grad[element_level_idx].reshape(-1, 1)
v1 = torch.cat([w0, w2], dim=1)
cosine_element[i] = -torch.nn.functional.cosine_similarity(v0, v1, dim=1)
# layer-wise cosine similarity
cosine_layer = torch.empty(size=(n, len(layer_level_idx)), dtype=torch.float).to(device)
for worker, grad in enumerate(param_list):
for layer, i, j in zip(range(len(gradients[0])), offset, offset[1:]):
v0 = grad_mean[i:j][layer_level_idx[layer]]
v1 = grad[i:j][layer_level_idx[layer]]
cos_dist = -torch.nn.functional.cosine_similarity(v0, v1, dim=0)
cosine_layer[worker][layer] = torch.where(torch.isnan(cos_dist), torch.tensor([-1], dtype=torch.float).to(device), cos_dist)
# layer-wise pearson distance
pearson_layer = torch.empty(size=(n, len(layer_level_idx)), dtype=torch.float).to(device)
for worker, grad in enumerate(param_list):
for layer, i, j in zip(range(len(gradients[0])), offset, offset[1:]):
v0 = grad_mean[i:j][layer_level_idx[layer]]
v1 = grad[i:j][layer_level_idx[layer]]
try:
dist = pearsonr(v0.detach().cpu().flatten().numpy(), v1.detach().cpu().flatten().numpy())[0]
except ValueError:
dist = -1
dist = torch.tensor([dist], dtype=torch.float)
pearson_layer[worker][layer] = torch.where(torch.isnan(dist), torch.tensor([-1], dtype=torch.float), dist)
### Sanitization Factor
eps = 1e-5
cluster = KMeans(n_clusters=2, n_init=n // 3, random_state=seed) # same configuration as Romoa code
values = torch.zeros(size=(3, n, num_params)).to(device) # 3 for num of distances
for i, distance in enumerate(["cosine_element", "cosine_layer", "pearson_layer"]):
if distance == "cosine_element":
label = cluster.fit_predict([t.detach().cpu().numpy() for t in cosine_element])
elif distance == "cosine_layer":
label = cluster.fit_predict([t.detach().cpu().numpy() for t in cosine_layer])
else:
label = cluster.fit_predict([t.detach().cpu().numpy() for t in pearson_layer])
counter = dict(collections.Counter(label))
weight = torch.tensor([counter[x] for x in label], dtype=torch.float).reshape(-1, 1).to(device)
weight = (weight - weight.min()) / (weight.max() - weight.min() + eps)
weight = weight / (weight.sum() + eps)
if distance == "cosine_element":
centroid = torch.sum(weight * cosine_element, dim=0)
for j in range(n):
score = 1 - torch.abs((cosine_element[j] - centroid) / (centroid + eps))
values[i][j][element_level_idx] = score
elif distance == "cosine_layer":
centroid = torch.sum(weight * cosine_layer, dim=0)
for j in range(n):
score = 1 - torch.abs((cosine_layer[j] - centroid) / (centroid + eps))
for k in range(len(offset) - 1):
values[i][j][offset[k]:offset[k+1]] = score[k]
else:
centroid = torch.sum(weight * pearson_layer, dim=0)
for j in range(n):
score = 1 - torch.abs((pearson_layer[j] - centroid) / (centroid + eps))
for k in range(len(offset) - 1):
values[i][j][offset[k]:offset[k + 1]] = score[k]
# Softmax
if n * num_params > 6e5:
F_t = torch.zeros(size=(n, num_params)).to(device)
start, step = 0, num_params // 10
stop = step
while start < num_params:
values_part = values[:, :, start:stop]
F_part, _ = torch.min(torch.sign(values_part) * torch.exp(torch.abs(values_part) * n), dim=0)
F_t[:, start:stop] = torch.nn.functional.softmax(F_part, dim=0)
start = stop
stop = min(start + step, num_params)
else:
F_t, _ = torch.min(torch.sign(values) * torch.exp(torch.abs(values) * n), dim=0)
F_t = torch.nn.functional.softmax(F_t, dim=0)
F = (1 - beta) * F_t + beta * F
F = torch.where(torch.isnan(F), torch.zeros(size=(n, num_params)).to(device), F) # set nan to 0
# gradient clip
upper, _ = torch.max(torch.stack(param_list, dim=1), dim=0)
lower, _ = torch.min(torch.stack(param_list, dim=1), dim=0)
max_value = torch.median(upper)
min_value = torch.median(lower)
param_list = [torch.clip(grad, max=max_value, min=min_value) for grad in param_list]
# compute global model update
global_update = torch.zeros(param_list[0].size()).to(device)
for i, grad in enumerate(param_list):
global_update += grad * F[i].reshape(-1, 1) # element-wise multiplication
# update the global model
idx = 0
for j, param in enumerate(net.parameters()):
param.add_(global_update[idx:(idx + torch.numel(param))].reshape(tuple(param.size())), alpha=-lr)
idx += torch.numel(param)
return F_t, global_update