-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathexercise08.03.tex
15 lines (15 loc) · 962 Bytes
/
exercise08.03.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
\paragraph{Exercise 8.3} Let $X$ be a uniform random variable on [0,1]. Then,
\[
\pr\left(X \leq \frac{1}{2} \mid \frac{1}{4} \leq X \leq \frac{3}{4}\right)
= \frac{\pr\left(\frac{1}{4} \leq X \leq \frac{1}{2}\right)}{\pr\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right)}
= \frac{\frac{1}{2} - \frac{1}{4}}{\frac{3}{4} - \frac{1}{4}}
= \frac{1}{2},
\]
and
\begin{align*}
\pr\left(X \leq \frac{1}{4} \mid \left(X \leq \frac{1}{3}\right) \cup \left( X \geq \frac{2}{3}\right) \right)
&= \frac{\pr\left(\left(X \leq \frac{1}{4} \right) \cap \left( \left(X \leq \frac{1}{3}\right) \cup \left( X \geq \frac{2}{3}\right) \right) \right)}{\pr\left(\left(X \leq \frac{1}{3}\right) \cup \left( X \geq \frac{2}{3}\right) \right)} \\
&= \frac{\pr\left(X \leq \frac{1}{4}\right)}{\pr\left(X \leq \frac{1}{3} \right) + \pr\left(X \geq \frac{2}{3}\right)} \\
& = \frac{\frac{1}{4}}{\frac{1}{3} + \frac{1}{3}} \\
&= \frac{3}{8}.
\end{align*}