-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasync_image_generator.py
190 lines (151 loc) · 7.3 KB
/
async_image_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Author: Emil Mirzayev
This script generates images based on prompts for different country groups using the DeepInfra API.
It allows for customization of image parameters and provides cost estimation before execution.
Features:
- Asynchronous image generation for improved performance
- Configurable number of images per country group
- Customizable image dimensions and inference steps
- Option to resize generated images
- Cost estimation and user confirmation before execution
- Saves generated images in separate folders for each country group
Usage:
python async_image_generator.py [--n_per_country N] [--width W] [--height H]
[--num_inference_steps S] [--model MODEL] [--resize]
Requirements:
- Python 3.7+
- Required packages: aiohttp, Pillow, python-dotenv
- DeepInfra API key (set in .env file)
- config.json file with country groups, prompts, and other configuration details
Note: Ensure you have sufficient API credits before running large batches.
"""
import aiohttp
import asyncio
import json
import base64
from PIL import Image
from io import BytesIO
from dotenv import load_dotenv
import os
import random
import argparse
import sys
# Load the .env file from the current directory
load_dotenv()
DEEPINFRA_API_KEY = os.getenv('DEEPINFRA_API_KEY')
async def generate_image(session, api_key, prompt, width, height, num_inference_steps, model):
if model == "schnell":
url = "https://api.deepinfra.com/v1/inference/black-forest-labs/FLUX-1-schnell"
elif model == "dev":
url ="https://api.deepinfra.com/v1/inference/black-forest-labs/FLUX-1-dev"
else:
return None
headers = {'Authorization': f'Bearer {api_key}'}
data = {"prompt": prompt, "width": width, "height": height, "num_inference_steps": num_inference_steps}
json_data = json.dumps(data)
async with session.post(url, headers=headers, data=json_data) as response:
if response.status == 200:
response_data = await response.json()
image_data = response_data['images'][0].split(',')[1]
image_bytes = base64.b64decode(image_data)
return image_bytes
else:
return None
def save_image(image_bytes, folder, filename, resize=False):
if image_bytes:
os.makedirs(folder, exist_ok=True)
full_path = os.path.join(folder, filename)
# Open the image using PIL
image = Image.open(BytesIO(image_bytes))
# Resize the image if the resize option is True
if resize:
image = image.resize((256, 256), Image.LANCZOS)
# Save the image
image.save(full_path)
print(f"Image saved as {full_path}")
else:
print("Failed to generate or save the image.")
def get_next_image_number(folder):
os.makedirs(folder, exist_ok=True)
existing_files = [f for f in os.listdir(folder) if f.endswith('.png')]
return len(existing_files) + 1
def calculate_total_images(config, n_per_country):
return len(config['countries']) * n_per_country
def ask_user_confirmation(total_images, total_cost):
print(f"\nPotential cost of this run: ${total_cost:.4f} for {total_images} images")
while True:
response = input("Do you want to proceed? (yes/no): ").lower().strip()
if response in ['yes', 'y']:
return True
elif response in ['no', 'n']:
return False
else:
print("Please answer with 'yes' or 'no'.")
def calculate_cost(width, height, num_inference_steps):
return 0.0005 * (width / 1024) * (height / 1024) * num_inference_steps
async def generate_images_for_country_group(session, country_group, config, n_per_country, width, height, num_inference_steps, model, resize):
print(f"\nGenerating images for {country_group}")
folder_name = f"generated_images/{country_group}"
os.makedirs(folder_name, exist_ok=True)
tasks = []
for i in range(n_per_country):
country = random.choice(config['countries'][country_group])
facial_characteristics = random.choice(config['facial_characteristics'])
hair = random.choice(config['hair'])
prompt = config['prompt'].format(
country=country,
facial_characteristics=facial_characteristics if facial_characteristics else "no facial hair",
hair=hair
)
print(f"Generated prompt: {prompt}")
task = asyncio.create_task(generate_image(
session=session,
api_key=DEEPINFRA_API_KEY,
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
model=model
))
tasks.append(task)
image_bytes_list = await asyncio.gather(*tasks)
for i, image_bytes in enumerate(image_bytes_list):
if image_bytes:
next_number = get_next_image_number(folder_name)
file_name = f"{country_group}{next_number}.png"
save_image(image_bytes, folder_name, file_name, resize)
return len([img for img in image_bytes_list if img is not None])
async def main():
parser = argparse.ArgumentParser(description="Generate images for country groups")
parser.add_argument("--n_per_country", type=int, default=1, help="Number of images to generate per country group. Defaults to 1")
parser.add_argument("--width", type=int, default=512, help="Width of the generated images. Defaults to 512")
parser.add_argument("--height", type=int, default=512, help="Height of the generated images. Defaults to 512")
parser.add_argument("--num_inference_steps", type=int, default=1, help="Number of inference steps. Defaults to 1")
parser.add_argument("--model", type= str, default= "schnell", help= "The model to be used. Must be one of `schnell` or `dev`. Schnell is cheaper and faster")
parser.add_argument("--resize", action="store_true", help="Resize images to 256x256 if set")
args = parser.parse_args()
with open('config.json', 'r') as f:
config = json.load(f)
total_images = calculate_total_images(config, args.n_per_country)
total_cost = total_images * calculate_cost(args.width, args.height, args.num_inference_steps)
if not ask_user_confirmation(total_images, total_cost):
print("Operation cancelled by user.")
sys.exit(0)
generated_images = 0
async with aiohttp.ClientSession() as session:
tasks = []
for country_group in config['countries'].keys():
task = asyncio.create_task(generate_images_for_country_group(
session, country_group, config, args.n_per_country,
args.width, args.height, args.num_inference_steps,
args.model, args.resize
))
tasks.append(task)
results = await asyncio.gather(*tasks)
generated_images = sum(results)
actual_cost = generated_images * calculate_cost(args.width, args.height, args.num_inference_steps)
print("\nImage generation complete for all country groups.")
print(f"Total images generated: {generated_images}")
print(f"Actual cost of this run: ${actual_cost:.4f}")
if __name__ == "__main__":
asyncio.run(main())