-
Notifications
You must be signed in to change notification settings - Fork 25
/
train.py
272 lines (235 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
Entry module and class module for training a GroundedTranslation model.
"""
from __future__ import print_function
import argparse
import logging
from math import ceil
import sys
from Callbacks import CompilationOfCallbacks
from data_generator import VisualWordDataGenerator
import models
import keras.callbacks
# Set up logger
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
logger = logging.getLogger(__name__)
class GroundedTranslation(object):
def __init__(self, args, datagen=None):
'''
Initialise the model and set Theano debugging model if
self.args.debug is true. Prepare the data generator if necessary.
'''
self.args = args
self.data_generator = datagen
self.use_sourcelang = args.source_vectors is not None
self.use_image = not args.no_image
self.log_run_arguments()
self.data_generator=datagen
self.prepare_datagenerator()
if self.args.debug:
theano.config.optimizer = 'fast_compile'
theano.config.exception_verbosity = 'high'
def train_model(self):
'''
Initialise the data generator to process the data in a memory-friendly
manner. Then build the Keras model, given the user-specified arguments
(or the initial defaults). Train the model for self.args.max_epochs
and return the training and validation losses.
The losses object contains a history variable. The history variable is
a dictionary with a list of training and validation losses:
losses.history.['loss']
losses.history.['val_loss']
'''
if not self.use_sourcelang:
hsn_size = 0
else:
hsn_size = self.data_generator.hsn_size # ick
if self.args.mrnn:
m = models.MRNN(self.args.embed_size, self.args.hidden_size,
self.V, self.args.dropin,
self.args.optimiser, self.args.l2reg,
hsn_size=hsn_size,
weights=self.args.init_from_checkpoint,
gru=self.args.gru,
clipnorm=self.args.clipnorm,
t=self.data_generator.max_seq_len,
lr=self.args.lr)
else:
m = models.NIC(self.args.embed_size, self.args.hidden_size,
self.V, self.args.dropin,
self.args.optimiser, self.args.l2reg,
hsn_size=hsn_size,
weights=self.args.init_from_checkpoint,
gru=self.args.gru,
clipnorm=self.args.clipnorm,
t=self.data_generator.max_seq_len,
lr=self.args.lr)
model = m.buildKerasModel(use_sourcelang=self.use_sourcelang,
use_image=self.use_image)
callbacks = CompilationOfCallbacks(self.data_generator.word2index,
self.data_generator.index2word,
self.args,
self.args.dataset,
self.data_generator,
use_sourcelang=self.use_sourcelang,
use_image=self.use_image)
train_generator = self.data_generator.random_generator('train')
train_size = self.data_generator.split_sizes['train']
val_generator = self.data_generator.fixed_generator('val')
val_size = self.data_generator.split_sizes['val']
losses = model.fit_generator(generator=train_generator,
samples_per_epoch=train_size,
nb_epoch= self.args.max_epochs,
verbose=1,
callbacks=[callbacks],
nb_worker=1,
validation_data=val_generator,
nb_val_samples=val_size)
return losses
def prepare_datagenerator(self):
'''
Initialise the data generator and its datastructures, unless a valid
data generator was already passed into the
GroundedTranslation.__init() function.
'''
# Initialise the data generator if it has not yet been initialised
if self.data_generator == None:
self.data_generator = VisualWordDataGenerator(self.args,
self.args.dataset)
# Extract the working vocabulary from the training dataset
if self.args.existing_vocab != "":
self.data_generator.set_vocabulary(self.args.existing_vocab)
else:
self.data_generator.extract_vocabulary()
self.V = self.data_generator.get_vocab_size()
def log_run_arguments(self):
'''
Save the command-line arguments, along with the method defaults,
used to parameterise this run.
'''
logger.info("Run arguments:")
for arg, value in self.args.__dict__.iteritems():
logger.info("%s: %s" % (arg, str(value)))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train an neural image description model")
# General options
parser.add_argument("--run_string", default="", type=str,
help="Optional string to help you identify the run")
parser.add_argument("--debug", action="store_true",
help="Print debug messages to stdout?")
parser.add_argument("--init_from_checkpoint", help="Initialise the model\
parameters from a pre-defined checkpoint? Useful to\
continue training a model.", default=None, type=str)
parser.add_argument("--fixed_seed", action="store_true",
help="Start with a fixed random seed? Useful for\
reproding experiments. (default = False)")
parser.add_argument("--num_sents", default=5, type=int,
help="Number of descriptions/image for training")
parser.add_argument("--meteor_lang", type=str, required=True,
help="Language of the input dataset. Required for\
correct Meteor evaluation. See\
http://www.cs.cmu.edu/~alavie/METEOR/README.html#languages\
for options.")
# Define the types of input data the model will receive
parser.add_argument("--dataset", default="", type=str, help="Path to the\
HDF5 dataset to use for training / val input\
(defaults to flickr8k)")
parser.add_argument("--supertrain_datasets", nargs="+", help="Paths to the\
datasets to use as additional training input (defaults\
to None)")
parser.add_argument("--unk", type=int,
help="unknown character cut-off. Default=3", default=3)
parser.add_argument("--maximum_length", type=int, default=50,
help="Maximum length of sequences permissible\
in the training data (Default = 50)")
parser.add_argument("--existing_vocab", type=str, default="",
help="Use an existing vocabulary model to define the\
vocabulary and UNKing in this dataset?\
(default = "", which means we will derive the\
vocabulary from the training dataset")
parser.add_argument("--no_image", action="store_true",
help="Do not use image data.")
parser.add_argument("--source_vectors", default=None, type=str,
help="Path to final hidden representations of\
encoder/source language VisualWordLSTM model.\
(default: None.) Expects a final_hidden_representation\
vector for each image in the dataset")
parser.add_argument("--source_enc", type=str, default=None,
help="Which type of source encoder features? Expects\
either 'mt_enc' or 'vis_enc'. Required.")
parser.add_argument("--source_type", type=str, default=None,
help="Source features over gold or predicted tokens?\
Expects 'gold' or 'predicted'. Required")
parser.add_argument("--source_merge", type=str, default="sum",
help="How to merge source features. Only applies if \
there are multiple feature vectors. Expects 'sum', \
'avg', or 'concat'.")
# Model hyperparameters
parser.add_argument("--batch_size", default=100, type=int)
parser.add_argument("--embed_size", default=256, type=int)
parser.add_argument("--hidden_size", default=256, type=int)
parser.add_argument("--dropin", default=0.5, type=float,
help="Prob. of dropping embedding units. Default=0.5")
parser.add_argument("--gru", action="store_true", help="Use GRU instead\
of LSTM recurrent state? (default = False)")
parser.add_argument("--mrnn", action="store_true",
help="Use a Mao-style multimodal recurrent neural\
network?")
parser.add_argument("--peeking_source", action="store_true",
help="Input the source features at every timestep?\
Default=False.")
# Optimisation details
parser.add_argument("--optimiser", default="adam", type=str,
help="Optimiser: rmsprop, momentum, adagrad, etc.")
parser.add_argument("--lr", default=0.001, type=float)
parser.add_argument("--beta1", default=None, type=float)
parser.add_argument("--beta2", default=None, type=float)
parser.add_argument("--epsilon", default=None, type=float)
parser.add_argument("--stopping_loss", default="bleu", type=str,
help="minimise cross-entropy or maximise BLEU?")
parser.add_argument("--l2reg", default=1e-8, type=float,
help="L2 cost penalty. Default=1e-8")
parser.add_argument("--clipnorm", default=-1, type=float,
help="Clip gradients? (default = -1, which means\
don't clip the gradients.")
parser.add_argument("--max_epochs", default=50, type=int,
help="Maxmimum number of training epochs. Used with\
--predefined_epochs")
parser.add_argument("--patience", type=int, default=10, help="Training\
will be terminated if validation BLEU score does not\
increase for this number of epochs")
parser.add_argument("--no_early_stopping", action="store_true")
# Language generation details
parser.add_argument("--generation_timesteps", default=30, type=int,
help="Maximum number of words to generate for unseen\
data (default=10).")
# Legacy options
parser.add_argument("--generate_from_N_words", type=int, default=0,
help="Use N words as starting point when generating\
strings. Useful mostly for mt-only model (in other\
cases, image provides enough useful starting\
context.)")
parser.add_argument("--predefined_epochs", action="store_true",
help="Do you want to stop training after a specified\
number of epochs, regardless of early-stopping\
criteria? Use in conjunction with --max_epochs.")
# Neccesary but unused in this module
parser.add_argument("--h5_writeable", action="store_true",
help="Open the H5 file for write-access? Useful for\
serialising hidden states to disk. (default = False)")
parser.add_argument("--use_predicted_tokens", action="store_true",
help="Generate final hidden state\
activations over oracle inputs or from predicted\
inputs? Default = False ( == Oracle)")
arguments = parser.parse_args()
if arguments.source_vectors is not None:
if arguments.source_type is None or arguments.source_enc is None:
parser.error("--source_type and --source_enc are required when\
using --source_vectors")
if arguments.fixed_seed:
import numpy as np
np.random.seed(1234)
import theano
model = GroundedTranslation(arguments)
model.train_model()