forked from magenta/magenta-demos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_tool.js
296 lines (269 loc) · 8.64 KB
/
data_tool.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
/**
* Author: David Ha <[email protected]>
*
* @fileoverview Basic p5.js sketch to show how to use sketch-rnn
* to generate random sketchs from a random latent vector.
*
* We generate 2 random sketches (in blue and green).
*
* We also take the average of the 2 vectors, and generate
* this interpolate image (in yellow).
*/
// container to get example data
if (typeof module != "undefined") {
}
var DataTool = {};
(function(global) {
"use strict";
var simplify_line = function(V, tolerance) {
// from https://gist.github.com/adammiller/826148
// V ... [[x1,y1],[x2,y2],...] polyline
// tol ... approximation tolerance
// ==============================================
// Copyright 2002, softSurfer (www.softsurfer.com)
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
// http://softsurfer.com/Archive/algorithm_0205/algorithm_0205.htm
var tol=2.0;
if (typeof(tolerance) === "number") {
tol = tolerance;
}
var sum = function(u,v) {return [u[0]+v[0], u[1]+v[1]];}
var diff = function(u,v) {return [u[0]-v[0], u[1]-v[1]];}
var prod = function(u,v) {return [u[0]*v[0], u[1]*v[1]];}
var dot = function(u,v) {return u[0]*v[0] + u[1]*v[1];}
var norm2 = function(v) {return v[0]*v[0] + v[1]*v[1];}
var norm = function(v) {return Math.sqrt(norm2(v));}
var d2 = function(u,v) {return norm2(diff(u,v));}
var d = function(u,v) {return norm(diff(u,v));}
var simplifyDP = function( tol, v, j, k, mk ) {
// This is the Douglas-Peucker recursive simplification routine
// It just marks vertices that are part of the simplified polyline
// for approximating the polyline subchain v[j] to v[k].
// mk[] ... array of markers matching vertex array v[]
if (k <= j+1) { // there is nothing to simplify
return;
}
// check for adequate approximation by segment S from v[j] to v[k]
var maxi = j; // index of vertex farthest from S
var maxd2 = 0; // distance squared of farthest vertex
var tol2 = tol * tol; // tolerance squared
var S = [v[j], v[k]]; // segment from v[j] to v[k]
var u = diff(S[1], S[0]); // segment direction vector
var cu = norm2(u,u); // segment length squared
// test each vertex v[i] for max distance from S
// compute using the Feb 2001 Algorithm's dist_Point_to_Segment()
// Note: this works in any dimension (2D, 3D, ...)
var w; // vector
var Pb; // point, base of perpendicular from v[i] to S
var b, cw, dv2; // dv2 = distance v[i] to S squared
for (var i=j+1; i<k; i++) {
// compute distance squared
w = diff(v[i], S[0]);
cw = dot(w,u);
if ( cw <= 0 ) {
dv2 = d2(v[i], S[0]);
} else if ( cu <= cw ) {
dv2 = d2(v[i], S[1]);
} else {
b = cw / cu;
Pb = [S[0][0]+b*u[0], S[0][1]+b*u[1]];
dv2 = d2(v[i], Pb);
}
// test with current max distance squared
if (dv2 <= maxd2) {
continue;
}
// v[i] is a new max vertex
maxi = i;
maxd2 = dv2;
}
if (maxd2 > tol2) { // error is worse than the tolerance
// split the polyline at the farthest vertex from S
mk[maxi] = 1; // mark v[maxi] for the simplified polyline
// recursively simplify the two subpolylines at v[maxi]
simplifyDP( tol, v, j, maxi, mk ); // polyline v[j] to v[maxi]
simplifyDP( tol, v, maxi, k, mk ); // polyline v[maxi] to v[k]
}
// else the approximation is OK, so ignore intermediate vertices
return;
}
var n = V.length;
var sV = [];
var i, k, m, pv; // misc counters
var tol2 = tol * tol; // tolerance squared
var vt = []; // vertex buffer, points
var mk = []; // marker buffer, ints
// STAGE 1. Vertex Reduction within tolerance of prior vertex cluster
vt[0] = V[0]; // start at the beginning
for (i=k=1, pv=0; i<n; i++) {
if (d2(V[i], V[pv]) < tol2) {
continue;
}
vt[k++] = V[i];
pv = i;
}
if (pv < n-1) {
vt[k++] = V[n-1]; // finish at the end
}
// STAGE 2. Douglas-Peucker polyline simplification
mk[0] = mk[k-1] = 1; // mark the first and last vertices
simplifyDP( tol, vt, 0, k-1, mk );
// copy marked vertices to the output simplified polyline
for (i=m=0; i<k; i++) {
if (mk[i]) {
sV[m++] = vt[i];
}
}
return sV;
}
var print = function(x) {
console.log(x);
};
// settings
var example_data;
var num_examples = -1;
var import_raw_data = function(raw_data) {
example_data = raw_data;
num_examples = example_data.length;
};
var pixel_factor = 1.0; // maybe should be 1.0 for non-retina screens.
var set_pixel_factor = function(scale) {
pixel_factor = scale; // set to 1.0 for d3 or paper.js, 2.0 for p5.js
};
var randi = function(a, b) { return Math.floor(Math.random()*(b-a)+a); };
var random_raw_example = function() {
if (num_examples <= 0) {
return null;
};
var idx = randi(0, num_examples);
var raw_data = example_data[idx];
var result = [], line;
var i, j;
var p;
var x, y;
var v;
for (i=0;i<raw_data.length;i++) {
line = [];
for (j=0;j<raw_data[i].length;j++) {
p = raw_data[i][j];
x = p.x/pixel_factor;
y = p.y/pixel_factor;
//line.push(new Vector(x, y));
line.push([x, y]);
}
result.push(line);
}
return result;
};
var simplify_lines = function(lines) {
var result = [];
var tolerance = 2.0;
for (var i=0;i<lines.length;i++) {
result.push(simplify_line(lines[i], tolerance));
}
return result;
};
var lines_to_strokes = function(raw_data) {
var x, y;
var px=0, py=0;
var dx, dy;
var pon, poff;
var stroke = [];
var i, j;
var len;
var p;
for (i=0;i<raw_data.length;i++) {
len = raw_data[i].length;
if (len > 1) {
for (j=0;j<len;j++) {
p = raw_data[i][j];
//x = p.x;
//y = p.y;
x = p[0];
y = p[1];
if (j === len-1) {
poff = 1;
pon = 0;
} else {
poff = 0;
pon = 1;
}
dx = x - px;
dy = y - py;
px = x;
py = y;
stroke.push([dx, dy, pon, poff, 0]);
}
}
}
stroke.push([0, 0, 0, 0, 1]);
return stroke.slice(1);
};
var line_to_stroke = function(line, last_point) {
var pon, poff;
var stroke = [];
var len;
var p;
var dx, dy;
var x, y;
var px, py;
var j;
px = last_point[0];
py = last_point[1];
len = line.length;
if (len > 1) {
for (j=0;j<len;j++) {
p = line[j];
//x = p.x;
//y = p.y;
x = p[0];
y = p[1];
if (j === len-1) {
poff = 1;
pon = 0;
} else {
poff = 0;
pon = 1;
}
dx = x - px;
dy = y - py;
px = x;
py = y;
stroke.push([dx, dy, pon, poff, 0]);
}
}
return stroke;
};
global.random_raw_example = random_raw_example;
global.set_pixel_factor = set_pixel_factor;
global.lines_to_strokes = lines_to_strokes;
//global.Vector = Vector;
global.simplify_line = simplify_line;
global.simplify_lines = simplify_lines;
global.line_to_stroke = line_to_stroke;
})(DataTool);
(function(lib) {
"use strict";
if (typeof module === "undefined" || typeof module.exports === "undefined") {
//window.jsfeat = lib; // in ordinary browser attach library to window
} else {
module.exports = lib; // in nodejs
}
})(DataTool);