From 82d782b467000adfd34f41adde632062bf80d5b3 Mon Sep 17 00:00:00 2001 From: kel Date: Mon, 22 Jan 2018 19:42:56 +0800 Subject: [PATCH] Calculate sum in Kahan summation algorithm in aggregations (#27807) (#27848) --- .../metrics/avg/AvgAggregator.java | 24 +++++-- .../aggregations/metrics/avg/InternalAvg.java | 15 ++++- .../metrics/stats/InternalStats.java | 13 +++- .../metrics/stats/StatsAggregator.java | 23 +++++-- .../extended/ExtendedStatsAggregator.java | 41 ++++++++++-- .../stats/extended/InternalExtendedStats.java | 15 ++++- .../aggregations/metrics/sum/InternalSum.java | 15 ++++- .../metrics/sum/SumAggregator.java | 24 +++++-- .../metrics/ExtendedStatsAggregatorTests.java | 65 +++++++++++++++++++ .../metrics/InternalExtendedStatsTests.java | 42 ++++++++++++ .../metrics/InternalStatsTests.java | 54 ++++++++++++++- .../metrics/InternalSumTests.java | 45 ++++++++++++- .../metrics/StatsAggregatorTests.java | 63 ++++++++++++++++++ .../metrics/SumAggregatorTests.java | 54 ++++++++++++++- .../metrics/avg/AvgAggregatorTests.java | 61 +++++++++++++++-- .../metrics/avg/InternalAvgTests.java | 41 ++++++++++++ .../test/InternalAggregationTestCase.java | 1 + 17 files changed, 559 insertions(+), 37 deletions(-) diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregator.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregator.java index 0decfa05575e4..27890efbff182 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregator.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregator.java @@ -44,6 +44,7 @@ public class AvgAggregator extends NumericMetricsAggregator.SingleValue { LongArray counts; DoubleArray sums; + DoubleArray compensations; DocValueFormat format; public AvgAggregator(String name, ValuesSource.Numeric valuesSource, DocValueFormat formatter, SearchContext context, @@ -55,6 +56,7 @@ public AvgAggregator(String name, ValuesSource.Numeric valuesSource, DocValueFor final BigArrays bigArrays = context.bigArrays(); counts = bigArrays.newLongArray(1, true); sums = bigArrays.newDoubleArray(1, true); + compensations = bigArrays.newDoubleArray(1, true); } } @@ -76,15 +78,29 @@ public LeafBucketCollector getLeafCollector(LeafReaderContext ctx, public void collect(int doc, long bucket) throws IOException { counts = bigArrays.grow(counts, bucket + 1); sums = bigArrays.grow(sums, bucket + 1); + compensations = bigArrays.grow(compensations, bucket + 1); if (values.advanceExact(doc)) { final int valueCount = values.docValueCount(); counts.increment(bucket, valueCount); - double sum = 0; + // Compute the sum of double values with Kahan summation algorithm which is more + // accurate than naive summation. + double sum = sums.get(bucket); + double compensation = compensations.get(bucket); + for (int i = 0; i < valueCount; i++) { - sum += values.nextValue(); + double value = values.nextValue(); + if (Double.isFinite(value) == false) { + sum += value; + } else if (Double.isFinite(sum)) { + double corrected = value - compensation; + double newSum = sum + corrected; + compensation = (newSum - sum) - corrected; + sum = newSum; + } } - sums.increment(bucket, sum); + sums.set(bucket, sum); + compensations.set(bucket, compensation); } } }; @@ -113,7 +129,7 @@ public InternalAggregation buildEmptyAggregation() { @Override public void doClose() { - Releasables.close(counts, sums); + Releasables.close(counts, sums, compensations); } } diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/InternalAvg.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/InternalAvg.java index 7fdcc6396b8c1..c30574c576de8 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/InternalAvg.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/avg/InternalAvg.java @@ -91,9 +91,20 @@ public String getWriteableName() { public InternalAvg doReduce(List aggregations, ReduceContext reduceContext) { long count = 0; double sum = 0; + double compensation = 0; + // Compute the sum of double values with Kahan summation algorithm which is more + // accurate than naive summation. for (InternalAggregation aggregation : aggregations) { - count += ((InternalAvg) aggregation).count; - sum += ((InternalAvg) aggregation).sum; + InternalAvg avg = (InternalAvg) aggregation; + count += avg.count; + if (Double.isFinite(avg.sum) == false) { + sum += avg.sum; + } else if (Double.isFinite(sum)) { + double corrected = avg.sum - compensation; + double newSum = sum + corrected; + compensation = (newSum - sum) - corrected; + sum = newSum; + } } return new InternalAvg(getName(), sum, count, format, pipelineAggregators(), getMetaData()); } diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/InternalStats.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/InternalStats.java index 172e3691127d1..dae5b7c6aac06 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/InternalStats.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/InternalStats.java @@ -152,12 +152,23 @@ public InternalStats doReduce(List aggregations, ReduceCont double min = Double.POSITIVE_INFINITY; double max = Double.NEGATIVE_INFINITY; double sum = 0; + double compensation = 0; for (InternalAggregation aggregation : aggregations) { InternalStats stats = (InternalStats) aggregation; count += stats.getCount(); min = Math.min(min, stats.getMin()); max = Math.max(max, stats.getMax()); - sum += stats.getSum(); + // Compute the sum of double values with Kahan summation algorithm which is more + // accurate than naive summation. + double value = stats.getSum(); + if (Double.isFinite(value) == false) { + sum += value; + } else if (Double.isFinite(sum)) { + double corrected = value - compensation; + double newSum = sum + corrected; + compensation = (newSum - sum) - corrected; + sum = newSum; + } } return new InternalStats(name, count, sum, min, max, format, pipelineAggregators(), getMetaData()); } diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/StatsAggregator.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/StatsAggregator.java index cca176bd1ad5f..321e9e10f0fe8 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/StatsAggregator.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/StatsAggregator.java @@ -45,6 +45,7 @@ public class StatsAggregator extends NumericMetricsAggregator.MultiValue { LongArray counts; DoubleArray sums; + DoubleArray compensations; DoubleArray mins; DoubleArray maxes; @@ -59,6 +60,7 @@ public StatsAggregator(String name, ValuesSource.Numeric valuesSource, DocValueF final BigArrays bigArrays = context.bigArrays(); counts = bigArrays.newLongArray(1, true); sums = bigArrays.newDoubleArray(1, true); + compensations = bigArrays.newDoubleArray(1, true); mins = bigArrays.newDoubleArray(1, false); mins.fill(0, mins.size(), Double.POSITIVE_INFINITY); maxes = bigArrays.newDoubleArray(1, false); @@ -88,6 +90,7 @@ public void collect(int doc, long bucket) throws IOException { final long overSize = BigArrays.overSize(bucket + 1); counts = bigArrays.resize(counts, overSize); sums = bigArrays.resize(sums, overSize); + compensations = bigArrays.resize(compensations, overSize); mins = bigArrays.resize(mins, overSize); maxes = bigArrays.resize(maxes, overSize); mins.fill(from, overSize, Double.POSITIVE_INFINITY); @@ -97,16 +100,28 @@ public void collect(int doc, long bucket) throws IOException { if (values.advanceExact(doc)) { final int valuesCount = values.docValueCount(); counts.increment(bucket, valuesCount); - double sum = 0; double min = mins.get(bucket); double max = maxes.get(bucket); + // Compute the sum of double values with Kahan summation algorithm which is more + // accurate than naive summation. + double sum = sums.get(bucket); + double compensation = compensations.get(bucket); + for (int i = 0; i < valuesCount; i++) { double value = values.nextValue(); - sum += value; + if (Double.isFinite(value) == false) { + sum += value; + } else if (Double.isFinite(sum)) { + double corrected = value - compensation; + double newSum = sum + corrected; + compensation = (newSum - sum) - corrected; + sum = newSum; + } min = Math.min(min, value); max = Math.max(max, value); } - sums.increment(bucket, sum); + sums.set(bucket, sum); + compensations.set(bucket, compensation); mins.set(bucket, min); maxes.set(bucket, max); } @@ -164,6 +179,6 @@ public InternalAggregation buildEmptyAggregation() { @Override public void doClose() { - Releasables.close(counts, maxes, mins, sums); + Releasables.close(counts, maxes, mins, sums, compensations); } } diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/ExtendedStatsAggregator.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/ExtendedStatsAggregator.java index 8dd78bf13730b..8339c06aefdcc 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/ExtendedStatsAggregator.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/ExtendedStatsAggregator.java @@ -49,9 +49,11 @@ public class ExtendedStatsAggregator extends NumericMetricsAggregator.MultiValue LongArray counts; DoubleArray sums; + DoubleArray compensations; DoubleArray mins; DoubleArray maxes; DoubleArray sumOfSqrs; + DoubleArray compensationOfSqrs; public ExtendedStatsAggregator(String name, ValuesSource.Numeric valuesSource, DocValueFormat formatter, SearchContext context, Aggregator parent, double sigma, List pipelineAggregators, @@ -65,11 +67,13 @@ public ExtendedStatsAggregator(String name, ValuesSource.Numeric valuesSource, D final BigArrays bigArrays = context.bigArrays(); counts = bigArrays.newLongArray(1, true); sums = bigArrays.newDoubleArray(1, true); + compensations = bigArrays.newDoubleArray(1, true); mins = bigArrays.newDoubleArray(1, false); mins.fill(0, mins.size(), Double.POSITIVE_INFINITY); maxes = bigArrays.newDoubleArray(1, false); maxes.fill(0, maxes.size(), Double.NEGATIVE_INFINITY); sumOfSqrs = bigArrays.newDoubleArray(1, true); + compensationOfSqrs = bigArrays.newDoubleArray(1, true); } } @@ -95,9 +99,11 @@ public void collect(int doc, long bucket) throws IOException { final long overSize = BigArrays.overSize(bucket + 1); counts = bigArrays.resize(counts, overSize); sums = bigArrays.resize(sums, overSize); + compensations = bigArrays.resize(compensations, overSize); mins = bigArrays.resize(mins, overSize); maxes = bigArrays.resize(maxes, overSize); sumOfSqrs = bigArrays.resize(sumOfSqrs, overSize); + compensationOfSqrs = bigArrays.resize(compensationOfSqrs, overSize); mins.fill(from, overSize, Double.POSITIVE_INFINITY); maxes.fill(from, overSize, Double.NEGATIVE_INFINITY); } @@ -105,19 +111,40 @@ public void collect(int doc, long bucket) throws IOException { if (values.advanceExact(doc)) { final int valuesCount = values.docValueCount(); counts.increment(bucket, valuesCount); - double sum = 0; - double sumOfSqr = 0; double min = mins.get(bucket); double max = maxes.get(bucket); + // Compute the sum and sum of squires for double values with Kahan summation algorithm + // which is more accurate than naive summation. + double sum = sums.get(bucket); + double compensation = compensations.get(bucket); + double sumOfSqr = sumOfSqrs.get(bucket); + double compensationOfSqr = compensationOfSqrs.get(bucket); for (int i = 0; i < valuesCount; i++) { double value = values.nextValue(); - sum += value; - sumOfSqr += value * value; + if (Double.isFinite(value) == false) { + sum += value; + sumOfSqr += value * value; + } else { + if (Double.isFinite(sum)) { + double corrected = value - compensation; + double newSum = sum + corrected; + compensation = (newSum - sum) - corrected; + sum = newSum; + } + if (Double.isFinite(sumOfSqr)) { + double correctedOfSqr = value * value - compensationOfSqr; + double newSumOfSqr = sumOfSqr + correctedOfSqr; + compensationOfSqr = (newSumOfSqr - sumOfSqr) - correctedOfSqr; + sumOfSqr = newSumOfSqr; + } + } min = Math.min(min, value); max = Math.max(max, value); } - sums.increment(bucket, sum); - sumOfSqrs.increment(bucket, sumOfSqr); + sums.set(bucket, sum); + compensations.set(bucket, compensation); + sumOfSqrs.set(bucket, sumOfSqr); + compensationOfSqrs.set(bucket, compensationOfSqr); mins.set(bucket, min); maxes.set(bucket, max); } @@ -196,6 +223,6 @@ public InternalAggregation buildEmptyAggregation() { @Override public void doClose() { - Releasables.close(counts, maxes, mins, sumOfSqrs, sums); + Releasables.close(counts, maxes, mins, sumOfSqrs, compensationOfSqrs, sums, compensations); } } diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/InternalExtendedStats.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/InternalExtendedStats.java index 6e06a88cccd32..1f259fbe87d9f 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/InternalExtendedStats.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/stats/extended/InternalExtendedStats.java @@ -45,7 +45,7 @@ public static Metrics resolve(String name) { private final double sigma; public InternalExtendedStats(String name, long count, double sum, double min, double max, double sumOfSqrs, double sigma, - DocValueFormat formatter, List pipelineAggregators, Map metaData) { + DocValueFormat formatter, List pipelineAggregators, Map metaData) { super(name, count, sum, min, max, formatter, pipelineAggregators, metaData); this.sumOfSqrs = sumOfSqrs; this.sigma = sigma; @@ -142,16 +142,25 @@ public String getStdDeviationBoundAsString(Bounds bound) { @Override public InternalExtendedStats doReduce(List aggregations, ReduceContext reduceContext) { double sumOfSqrs = 0; + double compensationOfSqrs = 0; for (InternalAggregation aggregation : aggregations) { InternalExtendedStats stats = (InternalExtendedStats) aggregation; if (stats.sigma != sigma) { throw new IllegalStateException("Cannot reduce other stats aggregations that have a different sigma"); } - sumOfSqrs += stats.getSumOfSquares(); + double value = stats.getSumOfSquares(); + if (Double.isFinite(value) == false) { + sumOfSqrs += value; + } else if (Double.isFinite(sumOfSqrs)) { + double correctedOfSqrs = value - compensationOfSqrs; + double newSumOfSqrs = sumOfSqrs + correctedOfSqrs; + compensationOfSqrs = (newSumOfSqrs - sumOfSqrs) - correctedOfSqrs; + sumOfSqrs = newSumOfSqrs; + } } final InternalStats stats = super.doReduce(aggregations, reduceContext); return new InternalExtendedStats(name, stats.getCount(), stats.getSum(), stats.getMin(), stats.getMax(), sumOfSqrs, sigma, - format, pipelineAggregators(), getMetaData()); + format, pipelineAggregators(), getMetaData()); } static class Fields { diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/InternalSum.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/InternalSum.java index 6f723f4fbcb28..fb64d168db6aa 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/InternalSum.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/InternalSum.java @@ -35,7 +35,7 @@ public class InternalSum extends InternalNumericMetricsAggregation.SingleValue i private final double sum; public InternalSum(String name, double sum, DocValueFormat formatter, List pipelineAggregators, - Map metaData) { + Map metaData) { super(name, pipelineAggregators, metaData); this.sum = sum; this.format = formatter; @@ -73,9 +73,20 @@ public double getValue() { @Override public InternalSum doReduce(List aggregations, ReduceContext reduceContext) { + // Compute the sum of double values with Kahan summation algorithm which is more + // accurate than naive summation. double sum = 0; + double compensation = 0; for (InternalAggregation aggregation : aggregations) { - sum += ((InternalSum) aggregation).sum; + double value = ((InternalSum) aggregation).sum; + if (Double.isFinite(value) == false) { + sum += value; + } else if (Double.isFinite(sum)) { + double corrected = value - compensation; + double newSum = sum + corrected; + compensation = (newSum - sum) - corrected; + sum = newSum; + } } return new InternalSum(name, sum, format, pipelineAggregators(), getMetaData()); } diff --git a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/SumAggregator.java b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/SumAggregator.java index bd325b39373e5..9ed8103a1e1ee 100644 --- a/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/SumAggregator.java +++ b/server/src/main/java/org/elasticsearch/search/aggregations/metrics/sum/SumAggregator.java @@ -43,6 +43,7 @@ public class SumAggregator extends NumericMetricsAggregator.SingleValue { private final DocValueFormat format; private DoubleArray sums; + private DoubleArray compensations; SumAggregator(String name, ValuesSource.Numeric valuesSource, DocValueFormat formatter, SearchContext context, Aggregator parent, List pipelineAggregators, Map metaData) throws IOException { @@ -51,6 +52,7 @@ public class SumAggregator extends NumericMetricsAggregator.SingleValue { this.format = formatter; if (valuesSource != null) { sums = context.bigArrays().newDoubleArray(1, true); + compensations = context.bigArrays().newDoubleArray(1, true); } } @@ -71,13 +73,27 @@ public LeafBucketCollector getLeafCollector(LeafReaderContext ctx, @Override public void collect(int doc, long bucket) throws IOException { sums = bigArrays.grow(sums, bucket + 1); + compensations = bigArrays.grow(compensations, bucket + 1); + if (values.advanceExact(doc)) { final int valuesCount = values.docValueCount(); - double sum = 0; + // Compute the sum of double values with Kahan summation algorithm which is more + // accurate than naive summation. + double sum = sums.get(bucket); + double compensation = compensations.get(bucket); for (int i = 0; i < valuesCount; i++) { - sum += values.nextValue(); + double value = values.nextValue(); + if (Double.isFinite(value) == false) { + sum += value; + } else if (Double.isFinite(sum)) { + double corrected = value - compensation; + double newSum = sum + corrected; + compensation = (newSum - sum) - corrected; + sum = newSum; + } } - sums.increment(bucket, sum); + compensations.set(bucket, compensation); + sums.set(bucket, sum); } } }; @@ -106,6 +122,6 @@ public InternalAggregation buildEmptyAggregation() { @Override public void doClose() { - Releasables.close(sums); + Releasables.close(sums, compensations); } } diff --git a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/ExtendedStatsAggregatorTests.java b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/ExtendedStatsAggregatorTests.java index 10b306ad7177c..144305647ebaf 100644 --- a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/ExtendedStatsAggregatorTests.java +++ b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/ExtendedStatsAggregatorTests.java @@ -20,6 +20,7 @@ package org.elasticsearch.search.aggregations.metrics; import org.apache.lucene.document.Document; +import org.apache.lucene.document.NumericDocValuesField; import org.apache.lucene.document.SortedNumericDocValuesField; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.RandomIndexWriter; @@ -38,6 +39,8 @@ import java.io.IOException; import java.util.function.Consumer; +import static java.util.Collections.singleton; + public class ExtendedStatsAggregatorTests extends AggregatorTestCase { private static final double TOLERANCE = 1e-5; @@ -132,6 +135,68 @@ public void testRandomLongs() throws IOException { ); } + public void testSummationAccuracy() throws IOException { + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifyStatsOfDoubles(values, 13.5, 16.21, 0d); + + // Summing up an array which contains NaN and infinities and expect a result same as naive summation + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + double sumOfSqrs = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + sumOfSqrs += values[i] * values[i]; + } + verifyStatsOfDoubles(values, sum, sumOfSqrs, TOLERANCE); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifyStatsOfDoubles(largeValues, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifyStatsOfDoubles(largeValues, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 0d); + } + + private void verifyStatsOfDoubles(double[] values, double expectedSum, + double expectedSumOfSqrs, double delta) throws IOException { + MappedFieldType ft = new NumberFieldMapper.NumberFieldType(NumberFieldMapper.NumberType.DOUBLE); + final String fieldName = "field"; + ft.setName(fieldName); + double max = Double.NEGATIVE_INFINITY; + double min = Double.POSITIVE_INFINITY; + for (double value : values) { + max = Math.max(max, value); + min = Math.min(min, value); + } + double expectedMax = max; + double expectedMin = min; + testCase(ft, + iw -> { + for (double value : values) { + iw.addDocument(singleton(new NumericDocValuesField(fieldName, NumericUtils.doubleToSortableLong(value)))); + } + }, + stats -> { + assertEquals(values.length, stats.getCount()); + assertEquals(expectedSum / values.length, stats.getAvg(), delta); + assertEquals(expectedSum, stats.getSum(), delta); + assertEquals(expectedSumOfSqrs, stats.getSumOfSquares(), delta); + assertEquals(expectedMax, stats.getMax(), 0d); + assertEquals(expectedMin, stats.getMin(), 0d); + } + ); + } + public void testCase(MappedFieldType ft, CheckedConsumer buildIndex, Consumer verify) throws IOException { diff --git a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalExtendedStatsTests.java b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalExtendedStatsTests.java index 143ad4553c7dd..6178a72c83e3e 100644 --- a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalExtendedStatsTests.java +++ b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalExtendedStatsTests.java @@ -21,6 +21,7 @@ import org.elasticsearch.common.io.stream.Writeable; import org.elasticsearch.search.DocValueFormat; +import org.elasticsearch.search.aggregations.InternalAggregation; import org.elasticsearch.search.aggregations.ParsedAggregation; import org.elasticsearch.search.aggregations.metrics.stats.extended.ExtendedStats.Bounds; import org.elasticsearch.search.aggregations.metrics.stats.extended.InternalExtendedStats; @@ -28,6 +29,7 @@ import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator; import org.elasticsearch.test.InternalAggregationTestCase; +import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; @@ -188,4 +190,44 @@ protected InternalExtendedStats mutateInstance(InternalExtendedStats instance) { } return new InternalExtendedStats(name, count, sum, min, max, sumOfSqrs, sigma, formatter, pipelineAggregators, metaData); } + + public void testSummationAccuracy() { + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifySumOfSqrsOfDoubles(values, 13.5, 0d); + + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + } + verifySumOfSqrsOfDoubles(values, sum, TOLERANCE); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifySumOfSqrsOfDoubles(largeValues, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifySumOfSqrsOfDoubles(largeValues, Double.NEGATIVE_INFINITY, 0d); + } + + private void verifySumOfSqrsOfDoubles(double[] values, double expectedSumOfSqrs, double delta) { + List aggregations = new ArrayList<>(values.length); + double sigma = randomDouble(); + for (double sumOfSqrs : values) { + aggregations.add(new InternalExtendedStats("dummy1", 1, 0.0, 0.0, 0.0, sumOfSqrs, sigma, null, null, null)); + } + InternalExtendedStats stats = new InternalExtendedStats("dummy", 1, 0.0, 0.0, 0.0, 0.0, sigma, null, null, null); + InternalExtendedStats reduced = stats.doReduce(aggregations, null); + assertEquals(expectedSumOfSqrs, reduced.getSumOfSquares(), delta); + } } diff --git a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalStatsTests.java b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalStatsTests.java index 2e3437d2093e5..514df399d7ea4 100644 --- a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalStatsTests.java +++ b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalStatsTests.java @@ -20,12 +20,16 @@ import org.elasticsearch.common.io.stream.Writeable; import org.elasticsearch.search.DocValueFormat; +import org.elasticsearch.search.aggregations.InternalAggregation; import org.elasticsearch.search.aggregations.ParsedAggregation; import org.elasticsearch.search.aggregations.metrics.stats.InternalStats; import org.elasticsearch.search.aggregations.metrics.stats.ParsedStats; import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator; import org.elasticsearch.test.InternalAggregationTestCase; +import java.io.IOException; +import java.util.ArrayList; +import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; @@ -43,7 +47,7 @@ protected InternalStats createTestInstance(String name, List } protected InternalStats createInstance(String name, long count, double sum, double min, double max, DocValueFormat formatter, - List pipelineAggregators, Map metaData) { + List pipelineAggregators, Map metaData) { return new InternalStats(name, count, sum, min, max, formatter, pipelineAggregators, metaData); } @@ -69,6 +73,54 @@ protected void assertReduced(InternalStats reduced, List inputs) assertEquals(expectedMax, reduced.getMax(), 0d); } + public void testSummationAccuracy() { + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifyStatsOfDoubles(values, 13.5, 0.9, 0d); + + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + } + verifyStatsOfDoubles(values, sum, sum / n, TOLERANCE); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifyStatsOfDoubles(largeValues, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifyStatsOfDoubles(largeValues, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 0d); + } + + private void verifyStatsOfDoubles(double[] values, double expectedSum, double expectedAvg, double delta) { + List aggregations = new ArrayList<>(values.length); + double max = Double.NEGATIVE_INFINITY; + double min = Double.POSITIVE_INFINITY; + for (double value : values) { + max = Math.max(max, value); + min = Math.min(min, value); + aggregations.add(new InternalStats("dummy1", 1, value, value, value, null, null, null)); + } + InternalStats internalStats = new InternalStats("dummy2", 0, 0.0, 2.0, 0.0, null, null, null); + InternalStats reduced = internalStats.doReduce(aggregations, null); + assertEquals("dummy2", reduced.getName()); + assertEquals(values.length, reduced.getCount()); + assertEquals(expectedSum, reduced.getSum(), delta); + assertEquals(expectedAvg, reduced.getAvg(), delta); + assertEquals(min, reduced.getMin(), 0d); + assertEquals(max, reduced.getMax(), 0d); + } + @Override protected void assertFromXContent(InternalStats aggregation, ParsedAggregation parsedAggregation) { assertTrue(parsedAggregation instanceof ParsedStats); diff --git a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalSumTests.java b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalSumTests.java index feeefac4daa55..884f9bfbe0d20 100644 --- a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalSumTests.java +++ b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/InternalSumTests.java @@ -20,12 +20,14 @@ import org.elasticsearch.common.io.stream.Writeable; import org.elasticsearch.search.DocValueFormat; +import org.elasticsearch.search.aggregations.InternalAggregation; import org.elasticsearch.search.aggregations.ParsedAggregation; import org.elasticsearch.search.aggregations.metrics.sum.InternalSum; import org.elasticsearch.search.aggregations.metrics.sum.ParsedSum; import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator; import org.elasticsearch.test.InternalAggregationTestCase; +import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; @@ -34,7 +36,7 @@ public class InternalSumTests extends InternalAggregationTestCase { @Override protected InternalSum createTestInstance(String name, List pipelineAggregators, Map metaData) { - double value = frequently() ? randomDouble() : randomFrom(new Double[] { Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY }); + double value = frequently() ? randomDouble() : randomFrom(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, Double.NaN); DocValueFormat formatter = randomFrom(new DocValueFormat.Decimal("###.##"), DocValueFormat.BOOLEAN, DocValueFormat.RAW); return new InternalSum(name, value, formatter, pipelineAggregators, metaData); } @@ -50,6 +52,47 @@ protected void assertReduced(InternalSum reduced, List inputs) { assertEquals(expectedSum, reduced.getValue(), 0.0001d); } + public void testSummationAccuracy() { + // Summing up a normal array and expect an accurate value + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifySummationOfDoubles(values, 13.5, 0d); + + // Summing up an array which contains NaN and infinities and expect a result same as naive summation + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + } + verifySummationOfDoubles(values, sum, TOLERANCE); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifySummationOfDoubles(largeValues, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifySummationOfDoubles(largeValues, Double.NEGATIVE_INFINITY, 0d); + } + + private void verifySummationOfDoubles(double[] values, double expected, double delta) { + List aggregations = new ArrayList<>(values.length); + for (double value : values) { + aggregations.add(new InternalSum("dummy1", value, null, null, null)); + } + InternalSum internalSum = new InternalSum("dummy", 0, null, null, null); + InternalSum reduced = internalSum.doReduce(aggregations, null); + assertEquals(expected, reduced.value(), delta); + } + @Override protected void assertFromXContent(InternalSum sum, ParsedAggregation parsedAggregation) { ParsedSum parsed = ((ParsedSum) parsedAggregation); diff --git a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/StatsAggregatorTests.java b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/StatsAggregatorTests.java index 7286c7de0fed5..c5c1420fb2265 100644 --- a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/StatsAggregatorTests.java +++ b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/StatsAggregatorTests.java @@ -19,6 +19,7 @@ package org.elasticsearch.search.aggregations.metrics; import org.apache.lucene.document.Document; +import org.apache.lucene.document.NumericDocValuesField; import org.apache.lucene.document.SortedNumericDocValuesField; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.RandomIndexWriter; @@ -36,6 +37,8 @@ import java.io.IOException; import java.util.function.Consumer; +import static java.util.Collections.singleton; + public class StatsAggregatorTests extends AggregatorTestCase { static final double TOLERANCE = 1e-10; @@ -113,6 +116,66 @@ public void testRandomLongs() throws IOException { ); } + public void testSummationAccuracy() throws IOException { + // Summing up a normal array and expect an accurate value + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifySummationOfDoubles(values, 15.3, 0.9, 0d); + + // Summing up an array which contains NaN and infinities and expect a result same as naive summation + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + } + verifySummationOfDoubles(values, sum, sum / n, TOLERANCE); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifySummationOfDoubles(largeValues, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifySummationOfDoubles(largeValues, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 0d); + } + + private void verifySummationOfDoubles(double[] values, double expectedSum, + double expectedAvg, double delta) throws IOException { + MappedFieldType ft = new NumberFieldMapper.NumberFieldType(NumberFieldMapper.NumberType.DOUBLE); + ft.setName("field"); + + double max = Double.NEGATIVE_INFINITY; + double min = Double.POSITIVE_INFINITY; + for (double value : values) { + max = Math.max(max, value); + min = Math.min(min, value); + } + double expectedMax = max; + double expectedMin = min; + testCase(ft, + iw -> { + for (double value : values) { + iw.addDocument(singleton(new NumericDocValuesField("field", NumericUtils.doubleToSortableLong(value)))); + } + }, + stats -> { + assertEquals(values.length, stats.getCount()); + assertEquals(expectedAvg, stats.getAvg(), delta); + assertEquals(expectedSum, stats.getSum(), delta); + assertEquals(expectedMax, stats.getMax(), 0d); + assertEquals(expectedMin, stats.getMin(), 0d); + } + ); + } + public void testCase(MappedFieldType ft, CheckedConsumer buildIndex, Consumer verify) throws IOException { diff --git a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/SumAggregatorTests.java b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/SumAggregatorTests.java index ff9888a4981d3..edaf5ae03f99b 100644 --- a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/SumAggregatorTests.java +++ b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/SumAggregatorTests.java @@ -34,6 +34,7 @@ import org.apache.lucene.search.TermQuery; import org.apache.lucene.store.Directory; import org.apache.lucene.util.BytesRef; +import org.apache.lucene.util.NumericUtils; import org.elasticsearch.common.CheckedConsumer; import org.elasticsearch.index.mapper.MappedFieldType; import org.elasticsearch.index.mapper.NumberFieldMapper; @@ -107,7 +108,7 @@ public void testQueryFiltering() throws IOException { } public void testStringField() throws IOException { - IllegalStateException e = expectThrows(IllegalStateException.class , () -> { + IllegalStateException e = expectThrows(IllegalStateException.class, () -> { testCase(new MatchAllDocsQuery(), iw -> { iw.addDocument(singleton(new SortedDocValuesField(FIELD_NAME, new BytesRef("1")))); }, count -> assertEquals(0L, count.getValue(), 0d)); @@ -116,10 +117,59 @@ public void testStringField() throws IOException { "Re-index with correct docvalues type.", e.getMessage()); } + public void testSummationAccuracy() throws IOException { + // Summing up a normal array and expect an accurate value + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifySummationOfDoubles(values, 15.3, 0d); + + // Summing up an array which contains NaN and infinities and expect a result same as naive summation + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + } + verifySummationOfDoubles(values, sum, 1e-10); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifySummationOfDoubles(largeValues, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifySummationOfDoubles(largeValues, Double.NEGATIVE_INFINITY, 0d); + } + + private void verifySummationOfDoubles(double[] values, double expected, double delta) throws IOException { + testCase(new MatchAllDocsQuery(), + iw -> { + for (double value : values) { + iw.addDocument(singleton(new NumericDocValuesField(FIELD_NAME, NumericUtils.doubleToSortableLong(value)))); + } + }, + result -> assertEquals(expected, result.getValue(), delta), + NumberFieldMapper.NumberType.DOUBLE + ); + } + private void testCase(Query query, CheckedConsumer indexer, Consumer verify) throws IOException { + testCase(query, indexer, verify, NumberFieldMapper.NumberType.LONG); + } + private void testCase(Query query, + CheckedConsumer indexer, + Consumer verify, + NumberFieldMapper.NumberType fieldNumberType) throws IOException { try (Directory directory = newDirectory()) { try (RandomIndexWriter indexWriter = new RandomIndexWriter(random(), directory)) { indexer.accept(indexWriter); @@ -128,7 +178,7 @@ private void testCase(Query query, try (IndexReader indexReader = DirectoryReader.open(directory)) { IndexSearcher indexSearcher = newSearcher(indexReader, true, true); - MappedFieldType fieldType = new NumberFieldMapper.NumberFieldType(NumberFieldMapper.NumberType.LONG); + MappedFieldType fieldType = new NumberFieldMapper.NumberFieldType(fieldNumberType); fieldType.setName(FIELD_NAME); fieldType.setHasDocValues(true); diff --git a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregatorTests.java b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregatorTests.java index 2849ede447b60..7835bf75e721f 100644 --- a/server/src/test/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregatorTests.java +++ b/server/src/test/java/org/elasticsearch/search/aggregations/metrics/avg/AvgAggregatorTests.java @@ -30,13 +30,11 @@ import org.apache.lucene.search.MatchAllDocsQuery; import org.apache.lucene.search.Query; import org.apache.lucene.store.Directory; +import org.apache.lucene.util.NumericUtils; import org.elasticsearch.common.CheckedConsumer; import org.elasticsearch.index.mapper.MappedFieldType; import org.elasticsearch.index.mapper.NumberFieldMapper; import org.elasticsearch.search.aggregations.AggregatorTestCase; -import org.elasticsearch.search.aggregations.metrics.avg.AvgAggregationBuilder; -import org.elasticsearch.search.aggregations.metrics.avg.AvgAggregator; -import org.elasticsearch.search.aggregations.metrics.avg.InternalAvg; import java.io.IOException; import java.util.Arrays; @@ -103,8 +101,59 @@ public void testQueryFiltersAll() throws IOException { }); } - private void testCase(Query query, CheckedConsumer buildIndex, Consumer verify) - throws IOException { + public void testSummationAccuracy() throws IOException { + // Summing up a normal array and expect an accurate value + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifyAvgOfDoubles(values, 0.9, 0d); + + // Summing up an array which contains NaN and infinities and expect a result same as naive summation + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + } + verifyAvgOfDoubles(values, sum / n, 1e-10); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifyAvgOfDoubles(largeValues, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifyAvgOfDoubles(largeValues, Double.NEGATIVE_INFINITY, 0d); + } + + private void verifyAvgOfDoubles(double[] values, double expected, double delta) throws IOException { + testCase(new MatchAllDocsQuery(), + iw -> { + for (double value : values) { + iw.addDocument(singleton(new NumericDocValuesField("number", NumericUtils.doubleToSortableLong(value)))); + } + }, + avg -> assertEquals(expected, avg.getValue(), delta), + NumberFieldMapper.NumberType.DOUBLE + ); + } + + private void testCase(Query query, + CheckedConsumer buildIndex, + Consumer verify) throws IOException { + testCase(query, buildIndex, verify, NumberFieldMapper.NumberType.LONG); + } + + private void testCase(Query query, + CheckedConsumer buildIndex, + Consumer verify, + NumberFieldMapper.NumberType fieldNumberType) throws IOException { Directory directory = newDirectory(); RandomIndexWriter indexWriter = new RandomIndexWriter(random(), directory); buildIndex.accept(indexWriter); @@ -114,7 +163,7 @@ private void testCase(Query query, CheckedConsumer inputs) { assertEquals(sum / counts, reduced.value(), 0.0000001); } + public void testSummationAccuracy() { + double[] values = new double[]{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7}; + verifyAvgOfDoubles(values, 0.9, 0d); + + int n = randomIntBetween(5, 10); + values = new double[n]; + double sum = 0; + for (int i = 0; i < n; i++) { + values[i] = frequently() + ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) + : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); + sum += values[i]; + } + verifyAvgOfDoubles(values, sum / n, TOLERANCE); + + // Summing up some big double values and expect infinity result + n = randomIntBetween(5, 10); + double[] largeValues = new double[n]; + for (int i = 0; i < n; i++) { + largeValues[i] = Double.MAX_VALUE; + } + verifyAvgOfDoubles(largeValues, Double.POSITIVE_INFINITY, 0d); + + for (int i = 0; i < n; i++) { + largeValues[i] = -Double.MAX_VALUE; + } + verifyAvgOfDoubles(largeValues, Double.NEGATIVE_INFINITY, 0d); + } + + private void verifyAvgOfDoubles(double[] values, double expected, double delta) { + List aggregations = new ArrayList<>(values.length); + for (double value : values) { + aggregations.add(new InternalAvg("dummy1", value, 1, null, null, null)); + } + InternalAvg internalAvg = new InternalAvg("dummy2", 0, 0, null, null, null); + InternalAvg reduced = internalAvg.doReduce(aggregations, null); + assertEquals(expected, reduced.getValue(), delta); + } + @Override protected void assertFromXContent(InternalAvg avg, ParsedAggregation parsedAggregation) { ParsedAvg parsed = ((ParsedAvg) parsedAggregation); diff --git a/test/framework/src/main/java/org/elasticsearch/test/InternalAggregationTestCase.java b/test/framework/src/main/java/org/elasticsearch/test/InternalAggregationTestCase.java index ea846c5dd1841..8f5fe5d5622e7 100644 --- a/test/framework/src/main/java/org/elasticsearch/test/InternalAggregationTestCase.java +++ b/test/framework/src/main/java/org/elasticsearch/test/InternalAggregationTestCase.java @@ -150,6 +150,7 @@ public abstract class InternalAggregationTestCase extends AbstractWireSerializingTestCase { public static final int DEFAULT_MAX_BUCKETS = 100000; + protected static final double TOLERANCE = 1e-10; private final NamedWriteableRegistry namedWriteableRegistry = new NamedWriteableRegistry( new SearchModule(Settings.EMPTY, false, emptyList()).getNamedWriteables());