forked from dbis-ilm/grizzly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
df_test.py
956 lines (673 loc) · 32.2 KB
/
df_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
from grizzly.expression import ExpressionException
import unittest
import sqlite3
import re
import grizzly
from grizzly.aggregates import AggregateType
from grizzly.sqlgenerator import SQLGenerator
from grizzly.relationaldbexecutor import RelationalExecutor
class CodeMatcher(unittest.TestCase):
def matchSnipped(self, snipped, template, removeLinebreaks: bool = False):
res, mapping, reason = CodeMatcher.doMatchSnipped(snipped.strip(), template.strip(),removeLinebreaks)
if not res:
mapstr = "with mapping:\n"
for templ,tVar in mapping.items():
mapstr += f"\t{templ} -> {tVar}\n"
self.fail(f"Mismatch\nFound: {snipped}\nExpected: {template}\nReason:\t{reason}\n{mapstr}")
@staticmethod
def doMatchSnipped(snipped, template, removeLinebreaks):
pattern = re.compile(r"\$t[0-9]+")
pattern2 = re.compile("_t[0-9]+")
placeholders = pattern.findall(template)
occurences = pattern2.findall(snipped)
mapping = {}
for p,o in zip(placeholders, occurences):
if p not in mapping:
mapping[p] = o
elif p in mapping and mapping[p] != o:
return False, mapping, f"Mapping error: {p} -> {mapping[p]} exists, but {p} -> {o} found"
# if we get here, the occurences match the templates
if len(placeholders) != len(occurences):
return False, mapping, f"number of placeholders {len(placeholders)} does not match occurences {len(occurences)}"
for (k,v) in mapping.items():
template = template.replace(k,v)
templateClean = template.replace("\n","").replace(" ","").lower()
snippedClean = snipped.replace("\n","").replace(" ","").lower()
matches = snippedClean == templateClean
return matches, mapping, "Snipped does not match template" if not matches else ""
class DataFrameTest(CodeMatcher):
def setUp(self):
c = sqlite3.connect("grizzly.db")
gen = SQLGenerator("sqlite")
executor = RelationalExecutor(c, gen)
grizzly.use(executor)
def tearDown(self):
grizzly.close()
def test_groupby(self):
df = grizzly.read_table("events")
g = df.groupby(["theyear","actor1name"])
a = g.agg(col="actor2name", aggType=AggregateType.MEAN)
# expected = "select $t0.theyear, $t0.actor1name, avg($t0.actor2name) from events $t0 group by $t0.theyear, $t0.actor1name"
expected = "select $t1.theyear, $t1.actor1name, avg($t1.actor2name) from (select * from events $t0) $t1 group by $t1.theyear, $t1.actor1name"
actual = a.generateQuery()
self.matchSnipped(actual, expected)
def test_Having(self):
df = grizzly.read_table("events")
g = df.groupby(["theyear","actor1name"])
a = g.agg(col="actor2name", aggType=AggregateType.COUNT,alias="cnt_actor")
f = a.filter(a["cnt_actor"] > 2)
expected = "select $t1.theyear, $t1.actor1name, count($t1.actor2name) as cnt_actor from (select * from events $t0) $t1 group by $t1.theyear, $t1.actor1name having cnt_actor > 2"
actual = f.generateQuery()
self.matchSnipped(actual, expected)
def test_HavingExec(self):
df = grizzly.read_table("events")
g = df.groupby(["actor1name"])
a = g.agg(col="actor2name", aggType=AggregateType.COUNT,alias="cnt_actor")
f = a.filter(a["cnt_actor"] > 2)
actual = f.collect()
self.assertEqual(len(actual), 872)
failedTuples = []
for (actor1name,cnt_actor) in actual:
if cnt_actor > 2:
failedTuples.append( (actor1name, cnt_actor) )
if len(failedTuples) <= 0:
msg = ",".join(failedTuples)
self.fail(f"tuples not matching having clause: {msg}")
def test_groupByTableAggComputedCol(self):
df = grizzly.read_table("events")
g = df.groupby(["theyear","actor1name"])
g["cnt_actor"] = g.count("actor2name") # FIXME: should not trigger execution but add the function to projection
g["min_actor"] = g.min(g.actor2name)
expected = "select $t1.theyear, $t1.actor1name, count($t1.actor2name) as cnt_actor, min($t1.actor2name) as min_actor from (select * from events $t0) $t1 group by $t1.theyear, $t1.actor1name"
actual = g.generateQuery()
self.matchSnipped(actual, expected)
def test_HavingTwice(self):
df = grizzly.read_table("events")
g = df.groupby(["theyear","actor1name"])
a = g.agg(col="actor2name", aggType=AggregateType.COUNT,alias="cnt_actor")
a = a.agg(col="actor2name", aggType=AggregateType.MIN,alias="min_actor")
f = a.filter(a["cnt_actor"] > 2)
f = f.filter(a["min_actor"] > 10)
expected = "select $t1.theyear, $t1.actor1name, count($t1.actor2name) as cnt_actor, min($t1.actor2name) as min_actor from (select * from events $t0) $t1 group by $t1.theyear, $t1.actor1name having cnt_actor > 2 and min_actor > 10"
actual = f.generateQuery()
self.matchSnipped(actual, expected)
def test_HavingTwiceExpr(self):
df = grizzly.read_table("events")
g = df.groupby(["theyear","actor1name"])
a = g.agg(col="actor2name", aggType=AggregateType.COUNT,alias="cnt_actor")
a = a.agg(col="actor2name", aggType=AggregateType.MIN,alias="min_actor")
f = a.filter((a["cnt_actor"] > 2) & (a["min_actor"] > 10))
expected = "select $t1.theyear, $t1.actor1name, count($t1.actor2name) as cnt_actor, min($t1.actor2name) as min_actor from (select * from events $t0) $t1 group by $t1.theyear, $t1.actor1name having cnt_actor > 2 and min_actor > 10"
actual = f.generateQuery()
self.matchSnipped(actual, expected)
def test_ComputedExpr(self):
df = grizzly.read_table("events")
df = df[df.globaleventid == 476829606]
df["newcol"] = df.theyear + df.monthyear
df = df[[df.newcol, df.theyear, df.monthyear]]
res = df.collect()
self.assertEqual(len(res), 1)
self.assertEqual(len(res[0]), 3)
theYear = 2015
monthYear = 201510
self.assertEqual(res[0][1], theYear)
self.assertEqual(res[0][2], monthYear)
self.assertEqual(res[0][0], theYear + monthYear)
def test_New(self):
df = grizzly.read_table("events")
df = df["a"]
df = df[df["a"] == 2]
actual = df.generateQuery()
expected = "select * from (select $t1.a from (select * from events $t0) $t1) $t2 where $t2.a = 2"
self.matchSnipped(actual, expected)
def test_selectStar(self):
df = grizzly.read_table("events")
actual = df.generateQuery()
expected = "select * from events $t0"
self.matchSnipped(actual, expected)
def test_selectCountStar(self):
df = grizzly.read_table("events")
actual = df.count()
self.assertEqual(actual, 30354)
def test_selectStarFilter(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 468189636]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid = 468189636"
self.matchSnipped(actual, expected)
def test_selectStarFilterString(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 'abc']
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid = 'abc'"
self.matchSnipped(actual, expected)
def test_selectColumnWithFilter(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 468189636]
df = df['goldsteinscale']
actual = df.generateQuery()
# expected = "select $t0.goldsteinscale from events $t0 where $t0.globaleventid = 468189636"
expected = "select $t2.goldsteinscale from (select * from (select * from events $t0) $t1 where $t1.globaleventid = 468189636) $t2"
self.matchSnipped(actual, expected)
def test_selectCountCol(self):
df = grizzly.read_table("events")
cnt = df.count('actor2name')
self.assertGreater(cnt, 0)
def test_selectStarGroupBy(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == '468189636']
g = df.groupby(["theyear","monthyear"])
actual = g.generateQuery()
expected = "select $t2.theyear, $t2.monthyear from (select * from (select * from events $t0) $t1 where $t1.globaleventid = '468189636') $t2 group by $t2.theyear, $t2.monthyear"
self.matchSnipped(actual, expected)
def test_groupByComputedCol(self):
from grizzly.generator import GrizzlyGenerator
oldGen = GrizzlyGenerator._backend.queryGenerator
newGen = SQLGenerator("postgresql")
GrizzlyGenerator._backend.queryGenerator = newGen
def mymod(s: str) -> int:
return len(s) % 2
df = grizzly.read_table("nation")
df["computed"] = df[df.n_name].map(mymod)
df = df.groupby("computed")
df = df.agg(col = "*", aggType = AggregateType.COUNT)
actual = df.generateQuery()
sql = "select computed, count(*) from (select *,mymod($t0.n_name) as computed from nation $t0) $t1 group by computed"
expected = f"""create or replace function mymod(s varchar(1024)) returns int language plpython3u as 'return len(s) % 2' parallel safe;{sql}"""
GrizzlyGenerator._backend.queryGenerator = oldGen
self.matchSnipped(actual, expected)
def test_groupByWithAggTwice(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 476829606]
g = df.groupby(["theyear","monthyear"])
agged = g.agg(col="actor2geo_type", aggType=AggregateType.COUNT)
aggActual = agged.generateQuery()
aggExpected = "select $t2.theyear, $t2.monthyear, count($t2.actor2geo_type) from (select * from (select * from events $t0) $t1 where $t1.globaleventid = 476829606) $t2 group by $t2.theyear, $t2.monthyear"
self.matchSnipped(aggActual, aggExpected)
def test_groupByAggGroupCol(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 476829606]
g = df.groupby(["theyear","monthyear"])
cnt = g.count("monthyear", "cnt")
# expected = "select count($t2.monthyear) as cnt from (select $t1.theyear, $t1.monthyear from (select * from (select * from events $t3) $t0 where $t0.globaleventid = 476829606) $t1 group by $t1.theyear, $t1.monthyear) $t2"
# self.matchSnipped(actual, expected)
self.assertEqual(cnt, 1)
def test_groupByAggGroupColCode(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 476829606]
g = df.groupby(["theyear","monthyear"])
actual = g.agg(col="monthyear", aggType=AggregateType.COUNT, alias="cnt").generateQuery()
expected = "select count($t2.monthyear) as cnt from (select $t1.theyear, $t1.monthyear from (select * from (select * from events $t3) $t0 where $t0.globaleventid = 476829606) $t1 group by $t1.theyear, $t1.monthyear) $t2"
self.matchSnipped(actual, expected)
def test_groupByAgg(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 476829606]
g = df.groupby(["theyear","monthyear"])
a = g.count("actor1name", "cnt")
# print(f"cnt: {a}")
self.assertEquals(len(a.collect()),1)
def test_groupByAggLimit(self):
df = grizzly.read_table("events")
df1 = df[(df.globaleventid < 470259271) & (df.actor1name != None)]
df1 = df1.groupby(df1.actor1name)
df1 = df1.count(df1.actor2name, alias="cnt_actor2")
df1 = df1[:2]
actual = df1.generateQuery()
expected = "select $t3.* from (select $t2.actor1name, count($t2.actor2name) as cnt_actor2 from (select * from (select * from events $t0) $t1 where $t1.globaleventid < 470259271 and $t1.actor1name is not null) $t2 group by $t2.actor1name) $t3 LIMIT 2"
self.matchSnipped(actual, expected)
def test_groupByCountGroups(self):
df = grizzly.read_table("events")
g = df.groupby("theyear")
a = g.count("theyear")
self.assertEqual(a, 3)
def test_joinTest(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 470259271]
df2 = grizzly.read_table("events")
joined = df.join(other = df2, on=["globaleventid", "globaleventid"], how = "inner")
actual = joined.generateQuery()
# expected = "SELECT * FROM events $t1 inner join events $t2 ON $t1.globaleventid = $t2.globaleventid where $t1.globaleventid = 470259271"
expected = "select * from (select * from (select * from events $t0) $t1 where $t1.globaleventid = 470259271) $t4 inner join (select * from events $t2) $t5 on $t4.globaleventid = $t5.globaleventid"
self.matchSnipped(actual, expected)
# self.assertGreater(joined.count(), 0)
def test_complexJoin(self):
df1 = grizzly.read_table("t1")
df2 = grizzly.read_table("t2")
j = df1.join(df2, on = (df1['a'] == df2['b']) & (df1['c'] <= df2['d']) , how="left outer")
# expected = "SELECT * FROM t1 $t0 LEFT OUTER JOIN t2 $t2 ON $t0.a = $t2.b AND $t0.c <= $t2.d".lower()
expected = "select * from (select * from t1 $t1) $t3 left outer join (select * from t2 $t2) $t4 on $t3.a = $t4.b and $t3.c <= $t4.d"
actual = j.generateQuery()
self.matchSnipped(actual, expected)
def test_complexWhere(self):
df = grizzly.read_table("t1")
expr = (df['a'] == df['b']) & (df['c'] <= df['d'])
df = df[expr]
expected = "select * from (select * from t1 $t1) $t2 where $t2.a = $t2.b and $t2.c <= $t2.d"
actual = df.generateQuery()
self.matchSnipped(actual, expected)
def test_parenthisExpr(self):
df = grizzly.read_table("t1")
expr = (df['a'] == df['b']) & ((df['c'] <= df['d']) | ((df.f > 3) & (df.e != None)))
df = df[expr]
actual = df.generateQuery()
expected = "select * from (select * from t1 $t1) $t2 where $t2.a = $t2.b and ($t2.c <= $t2.d or ($t2.f > 3 and $t2.e is not NULL))"
self.matchSnipped(actual, expected)
def test_triJoin(self):
df1 = grizzly.read_table("t1")
df2 = grizzly.read_table("t2")
df3 = grizzly.read_table("t3")
df3 = df3[["b","d"]]
j = df1.join(df2, on = (df1['a'] == df2['b']) & (df1['c'] <= df2['d']), how="left outer")
j = j[[df1.m,df2.x]]
j2 = j.join(df3, on = (j['m'] == df3['b']) & (j['x'] <= df3['d']), how="inner")
actual = j2.generateQuery()
# expected = "select $t1.m, $t2.x, $t4.b, $t4.d from t1 $t1 left outer join t2 $t2 on $t1.a = $t2.b and $t1.c <= $t2.d inner join (select $t3.b, $t3.d from t3 $t3) $t4 on $t1.m = $t4.b and $t1.x <= $t4.d"
expected = "select * from (select $t2.m, $t2.x from (select * from (select * from t1 $t0) $t0 left outer join (select * from t2 $t1) $t1 on $t0.a = $t1.b and $t0.c <= $t1.d) $t2) $t2 inner join (select $t6.b, $t6.d from (select * from t3 $t4) $t6) $t6 on $t3.m = $t6.b and $t3.x <= $t6.d"
self.matchSnipped(actual, expected)
def test_DistinctAll(self):
df = grizzly.read_table("events")
df = df.distinct()
actual = df.generateQuery()
expected = "SELECT distinct * FROM (SELECT * from events $t0) $t1"
self.matchSnipped(actual, expected)
def test_DistinctOneCol(self):
df = grizzly.read_table("events")
df = df['isrootevent'].distinct()
actual = df.generateQuery()
# print(actual)
expected = "select distinct $t1.isrootevent from (select * from events $t0) $t1"
self.matchSnipped(actual, expected)
def test_DistinctTwoCols(self):
df = grizzly.read_table("events")
df = df[['y',"x"]].distinct()
actual = df.generateQuery()
expected = "select distinct $t1.y, $t1.x from (select * from events $t0) $t1"
self.matchSnipped(actual, expected)
# print(df[['y',"x"]].distinct().sql())
def test_Eq(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 468189636]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid = 468189636"
self.matchSnipped(actual, expected)
def test_EqNone(self):
df = grizzly.read_table("events")
df = df[df['actor1name'] == None]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.actor1name is NULL"
self.matchSnipped(actual, expected)
def test_Ne(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] != 468189636]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid <> 468189636"
self.matchSnipped(actual, expected)
def test_NeNone(self):
df = grizzly.read_table("events")
df = df[df['actor1name'] != None]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.actor1name is not NULL"
self.matchSnipped(actual, expected)
def test_Lt(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] < 468189636]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid < 468189636"
self.matchSnipped(actual, expected)
def test_LtNone(self):
df = grizzly.read_table("events")
df = df[df['actor1name'] < None]
with self.assertRaises(ExpressionException):
df.generateQuery()
def test_Le(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] <= 468189636]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid <= 468189636"
self.matchSnipped(actual, expected)
def test_Gt(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] > 468189636]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid > 468189636"
self.matchSnipped(actual, expected)
def test_Ge(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] >= 468189636]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 where $t1.globaleventid >= 468189636"
self.matchSnipped(actual, expected)
def test_shapeFull(self):
df = grizzly.read_table("events")
(cols, rows) = df.shape
self.assertEqual(cols, 58)
self.assertEqual(rows, 30354)
def test_shapeGrp(self):
df = grizzly.read_table("events")
g = df.groupby(["theyear","actor1name"])
a = g.agg(col="actor2name", aggType=AggregateType.COUNT,alias="cnt_actor")
f = a.filter(a["cnt_actor"] > 2)
(cols, rows) = f.shape
self.assertEqual(cols, 3) # 2 grouping + 1 aggr
self.assertEqual(rows, 879)
def test_collect(self):
df = grizzly.read_table("events")
arr = df.collect(includeHeader=False)
self.assertEqual(len(arr), 30354)
def test_collectWithHeader(self):
df = grizzly.read_table("events")
arr = df.collect(includeHeader=True)
self.assertEqual(len(arr), 30354+1)
def test_show(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] <= 468189636 ] #== 467268277
df = df[["actor1name","actor2name", "globaleventid","sourceurl"]]
from io import StringIO
import sys
try:
bkp = sys.stdout
sys.stdout = mystdout = StringIO()
df.show(limit=None)
output = mystdout.getvalue().splitlines()
self.assertEqual(len(output), 2842+1) #+1 for column names
finally:
sys.stdout = bkp
def test_tail(self):
df = grizzly.read_table("events")
df = df.sort_values("globaleventid")
tl = df.tail(10)
print(tl)
self.assertEqual(len(tl), 10)
def test_showPretty(self):
df = grizzly.read_table("events")
df = df[df['globaleventid'] <= 468189636] #== 467268277
df = df[["actor1name","actor2name", "globaleventid","sourceurl"]]
from io import StringIO
import sys
try:
bkp = sys.stdout
sys.stdout = mystdout = StringIO()
maxColWidth = 40
df.show(pretty=True, maxColWidth = maxColWidth)
output = mystdout.getvalue().splitlines()
for row in output:
for col in row:
self.assertLessEqual(len(col), maxColWidth)
finally:
sys.stdout = bkp
# def test_toString(self):
# df = grizzly.read_table("events")
# df = df[df['globaleventid'] == 467268277]
# df = df[["actor1name","actor2name", "globaleventid","sourceurl"]]
# strDF = str(df)
# splt = strDF.split("\n")
# rows = df.count()
# dfLen = len(splt)
# rowsLen = rows+ 1 # column names
# self.assertEqual(dfLen, rowsLen)
def test_ViewJoin(self):
df1 = grizzly.read_table("t1")
df2 = grizzly.read_table("t2")
j = df1.join(df2, on = (df1.actor1name == df2.actor2name) | (df1["actor1countrycode"] <= df2["actor2countrycode"]), how="left outer")
cnt = j.count()
self.assertEqual(cnt, 9899259)
def test_udf(self):
from grizzly.generator import GrizzlyGenerator
oldGen = GrizzlyGenerator._backend.queryGenerator
newGen = SQLGenerator("postgresql")
GrizzlyGenerator._backend.queryGenerator = newGen
# function must have "return annotation" so that we know
# what the result would be
# parameters should also contain type annotation, e.g. 'a: int'
# or may be named after the actual column (postgres lets you define the type
# by referencing the column with `mytable.mycolumn%TYPE`)
def myfunc(a: int) -> str:
return a+"_grizzly"
df = grizzly.read_table("events")
df = df[df['globaleventid'] == 467268277]
df["newid"] = df["globaleventid"].map(myfunc)
sql = "select *,myfunc($t1.globaleventid) as newid from (select * from events $t0) $t1 where $t1.globaleventid = 467268277"
actual = df.generateQuery()
expected = f"""create or replace function myfunc(a int) returns varchar(1024) language plpython3u as 'return a+"_grizzly"' parallel safe;{sql}"""
GrizzlyGenerator._backend.queryGenerator = oldGen
self.matchSnipped(actual, expected, removeLinebreaks=True)
# def test_udflambda(self):
# df = grizzly.read_table("events")
# # df["newid"] = [df['globaleventid'] == 467268277]
# df["newid"] = df["globaleventid"].map(lambda x: x+"grizzlylambda")
def test_mapDataFrame(self):
df1 = grizzly.read_table("events")
df2 = grizzly.read_table("events")
j = df1.map(df2)
actual = j.generateQuery()
expected = "select * from (select * from events $t0) $t1 natural join (select * from events $t2) $t3"
self.matchSnipped(actual, expected)
def test_limitgen(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.limit(10)
expected = "select $t2.* from (select $t1.globaleventid, $t1.actor1name FROM (select * from events $t0) $t1) $t2 limit 10"
actual = df.generateQuery()
self.matchSnipped(actual, expected)
def test_limitExec(self):
n = 10
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.limit(n)
data = df.collect()
self.assertEqual(len(data), n)
def test_sliceExec(self):
df = grizzly.read_table("events")
df = df[5:10]
data = df.collect()
self.assertEqual(len(data),10)
def test_sliceGen(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df[5:10]
expected = "select $t2.* from (select $t1.globaleventid, $t1.actor1name FROM (select * from events $t0) $t1) $t2 limit 10 offset 5"
actual = df.generateQuery()
self.matchSnipped(actual, expected)
def test_orderingdefault(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.sort_values(by = "globaleventid")
actual = df.generateQuery()
expected = "select * from (select $t1.globaleventid, $t1.actor1name from (select * from events $t0) $t1) $t2 order by $t2.globaleventid asc"
self.matchSnipped(actual, expected)
def test_orderingDESC(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.sort_values(by = "globaleventid", ascending=False)
actual = df.generateQuery()
expected = "select * from (select $t1.globaleventid, $t1.actor1name from (select * from events $t0) $t1) $t2 order by $t2.globaleventid desc"
self.matchSnipped(actual, expected)
def test_orderingMulti(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.sort_values(by = ["globaleventid","actor1name"])
actual = df.generateQuery()
expected = "select * from (select $t1.globaleventid, $t1.actor1name from (select * from events $t0) $t1) $t2 order by $t2.globaleventid, $t2.actor1name asc"
self.matchSnipped(actual, expected)
def test_orderingMultiDESC(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.sort_values(by = ["globaleventid","actor1name"],ascending=False)
actual = df.generateQuery()
expected = "select * from (select $t1.globaleventid, $t1.actor1name from (select * from events $t0) $t1) $t2 order by $t2.globaleventid, $t2.actor1name desc"
self.matchSnipped(actual, expected)
def test_orderingMultiSingleRef(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.sort_values(by = df.globaleventid)
actual = df.generateQuery()
expected = "select * from (select $t1.globaleventid, $t1.actor1name from (select * from events $t0) $t1) $t2 order by $t2.globaleventid asc"
self.matchSnipped(actual, expected)
def test_orderingMultiRef(self):
df = grizzly.read_table("events")
df = df[["globaleventid","actor1name"]]
df = df.sort_values(by = [df.globaleventid, df["actor1name"]])
actual = df.generateQuery()
expected = "select * from (select $t1.globaleventid, $t1.actor1name from (select * from events $t0) $t1) $t2 order by $t2.globaleventid, $t2.actor1name asc"
self.matchSnipped(actual, expected)
def test_iterate(self):
df = grizzly.read_table("events")
cnt = 0
for _ in df:
cnt += 1
expected = df.count()
self.assertEqual(cnt, expected)
def test_iterrows(self):
df = grizzly.read_table("events")
df = df[[df.actor1name, df.actor2name]]
df = df[100:10]
n = 0
for num, row in df.iterrows():
self.assertEqual(num, n, "row num")
self.assertEqual(len(row), 2)
n += 1
self.assertEqual(n, 10, "total number") # will be increased one more time in last iteration
def test_itertuples(self):
df = grizzly.read_table("events")
df = df[[df.actor1name, df.actor2name]]
df = df[100:10]
r = re.compile(r"Grizzly\(actor1name=.+, actor2name=.+\)")
n = 0
for tup in df.itertuples():
s = str(tup)
self.assertRegexpMatches(s, r)
n += 1
self.assertEqual(n, 10, "total number") # will be increased one more time in last iteration
def test_items(self):
df = grizzly.read_table("events")
df = df[[df.actor1name, df.actor2name]]
df = df[100:10]
i = 0
names = ["actor1name", "actor2name"]
for item in df.items():
self.assertEqual(item[0], names[i]) # name column
self.assertEqual(len(item[1]),10)
i += 1
self.assertEqual(i, 2) # two columns
def test_at(self):
df = grizzly.read_table("events",index="globaleventid")
res = df.at[467268277,'actor1name']
self.assertEqual(len(res), 1)
self.assertEqual(res[0], 'AFRICA')
def test_atColOnly(self):
df = grizzly.read_table("events",index="globaleventid")
res = df.at[df.actor1name]
self.assertEqual(len(res), 1)
# self.assertEqual(len(res[0]), 1)
def test_locInt(self):
df = grizzly.read_table("events", index="globaleventid")
res = df.loc[467268277].collect()
self.assertEqual(len(res), 1)
self.assertEqual(len(res[0]), 58)
def test_locIntNoIndex(self):
df = grizzly.read_table("events", index=None)
with self.assertRaises(ValueError):
df.loc[467268277].collect()
def test_locListGen(self):
df = grizzly.read_table("events", index="globaleventid")
df = df.loc[[467268277,477265011]]
actual = df.generateQuery()
expected = "select * from (select * from events $t0) $t1 WHERE $t1.globaleventid in (467268277,477265011)"
self.matchSnipped(actual, expected)
def test_locList(self):
df = grizzly.read_table("events", index="globaleventid")
df = df.loc[[467268277,477265011]]
res = df.collect()
self.assertEqual(len(res), 2)
self.assertEqual(len(res[0]), 58)
self.assertEqual(len(res[1]), 58)
# def test_predictPytorch(self):
# from grizzly.generator import GrizzlyGenerator
# oldGen = GrizzlyGenerator._backend.queryGenerator
# newGen = SQLGenerator("postgresql")
# GrizzlyGenerator._backend.queryGenerator = newGen
# def isEmptyString(s):
# return len(s) <= 0
# def stringToTensor(s):
# if not isEmptyString(s):
# return s.split()
# else:
# return []
# df = grizzly.read_table("events")
# df["blubb"] = df[df.n_nation].apply_torch_model("/tmp/mymodel.pt", stringToTensor, clazzParameters=[],outputDict=["hallo"])
# actual = df.generateQuery()
# print(actual)
# GrizzlyGenerator._backend.queryGenerator = oldGen
def test_externaltable(self):
from grizzly.generator import GrizzlyGenerator
oldGen = GrizzlyGenerator._backend.queryGenerator
newGen = SQLGenerator("vector")
GrizzlyGenerator._backend.queryGenerator = newGen
try:
df = grizzly.read_external_files("filename.csv", ["a:int, b:str, c:float"], False, format="csv")
actual = df.generateQuery()
expected = "DROP TABLE IF EXISTS temp_ext_table$t0; " \
"CREATE EXTERNAL TABLE temp_ext_table$t0(a int, b VARCHAR(1024), c float) " \
"USING SPARK WITH REFERENCE='filename.csv', FORMAT='csv', OPTIONS=('delimiter'='|','header'='false','schema'='a int, b VARCHAR(1024), c float') " \
"SELECT * FROM temp_ext_table$t0 $t0"
self.matchSnipped(actual, expected)
df = grizzly.read_external_files("filename.csv", ["a:int, b:str, c:float"], True, format="csv")
actual = df.generateQuery()
expected = "DROP TABLE IF EXISTS temp_ext_table$t0; " \
"CREATE EXTERNAL TABLE temp_ext_table$t0(a int, b VARCHAR(1024), c float) " \
"USING SPARK WITH REFERENCE='filename.csv', FORMAT='csv', OPTIONS=('delimiter'='|') " \
"SELECT * FROM temp_ext_table$t0 $t0"
self.matchSnipped(actual, expected)
df = grizzly.read_external_files("filename.csv", ["a:int, b:str, c:float"], True, ',', format="csv")
actual = df.generateQuery()
expected = "DROP TABLE IF EXISTS temp_ext_table$t0; " \
"CREATE EXTERNAL TABLE temp_ext_table$t0(a int, b VARCHAR(1024), c float) " \
"USING SPARK WITH REFERENCE='filename.csv', FORMAT='csv', OPTIONS=('delimiter'=',') " \
"SELECT * FROM temp_ext_table$t0 $t0"
self.matchSnipped(actual, expected)
df = grizzly.read_external_files("filename.csv", ["a:int, b:str, c:float"], True, ',', format="csv")
actual = df.generateQuery()
expected = "DROP TABLE IF EXISTS temp_ext_table$t0; " \
"CREATE EXTERNAL TABLE temp_ext_table$t0(a int, b VARCHAR(1024), c float) " \
"USING SPARK WITH REFERENCE='filename.csv', FORMAT='csv', OPTIONS=('delimiter'=',') " \
"SELECT * FROM temp_ext_table$t0 $t0"
self.matchSnipped(actual, expected)
finally:
GrizzlyGenerator._backend.queryGenerator = oldGen
def test_computedColML(self):
from grizzly.generator import GrizzlyGenerator
oldGen = GrizzlyGenerator._backend.queryGenerator
newGen = SQLGenerator("postgresql")
GrizzlyGenerator._backend.queryGenerator = newGen
def input_to_tensor(input:str):
return input
def tensor_to_output(tensor) -> str:
return "positiv"
try:
onnx_path = "/var/lib/postgresql/roberta-sequence-classification.onnx"
df = grizzly.read_table("reviews_SIZE")
df["sentiment"] = df["review"].apply_onnx_model(onnx_path, input_to_tensor, tensor_to_output)
df = df.groupby(["sentiment"]).count("review")
# df.show(pretty = True)
actual = df.generateQuery()
expected = """CREATE OR REPLACE FUNCTION apply(input varchar(1024)) RETURNS varchar(1024) LANGUAGE plpython3u AS 'import onnxruntime
import random
def apply(input: str) -> str:
def input_to_tensor(input:str):
return input
def tensor_to_output(tensor) -> str:
return "positiv"
def apply_model(input):
if not hasattr(random, "onnx_session"):
random.onnx_session = onnxruntime.InferenceSession("/var/lib/postgresql/roberta-sequence-classification.onnx")
inputs = input_to_tensor(input)
ret = random.onnx_session.run(None, inputs)
return(tensor_to_output(ret))
return apply_model(input)
return apply(input)
' parallel safe; SELECT sentiment, count($t0.review) FROM (SELECT *, apply($t2.review) as sentiment FROM reviews_SIZE $t2) $t0 GROUP BY sentiment"""
self.matchSnipped(actual, expected)
finally:
GrizzlyGenerator._backend.queryGenerator = oldGen
if __name__ == "__main__":
unittest.main()