-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdms_plot_script.py
138 lines (122 loc) · 4.46 KB
/
dms_plot_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Short plotting script for the DMS varying experiment.
This should not be called before all experiments have been run.
Experiments.run_all()
However if eval_data is populated it can also be run. Without the experiments
Requires the VaryDifferenceMaximization().run() class to be run first.
Requires the TrainBaselines().run() to be evaluated first.
Requires the PLabelDefault().run() to be evaluated first.
"""
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from src.utils.evaluation import evaluate_IoU
from src.pet_3.data import PetsDataFetcher
from src.plotting.temporary_plot_utils import (
evaluate_models,
)
mpl.style.use("default")
mpl.rcParams["font.family"] = "serif"
mpl.rcParams["font.serif"] = "Computer Modern"
mpl.rcParams["text.usetex"] = True
if __name__ == "__main__":
dms_props = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
baseline_file = os.path.join("eval_data", "baseline_loss.npy")
dms_file = os.path.join("eval_data", "dmt_loss_dms.npy")
plabel_file = os.path.join("eval_data", "plabel_loss.npy")
save_file = os.path.join("final_figs", "dms_experiment.png")
if os.path.isfile(dms_file) and os.path.isfile(baseline_file):
loss = np.load(dms_file)
baselines_loss = np.load(baseline_file)
plabel_loss = np.load(plabel_file)
else:
baseline_dir = os.path.join("models", "baselines")
models_dir = os.path.join("models", "vary_difference_maximization")
plabel_dir = os.path.join("models", "plabel_vary_label_proportion")
data = PetsDataFetcher("src/pet_3/").get_test_data()
baseline_models_list = os.listdir(baseline_dir)
baseline_models_list = [
os.path.join(baseline_dir, f_name) for f_name in baseline_models_list
]
baseline_models_list.sort()
dmt_models_list = os.listdir(models_dir)
dmt_models_list = [
os.path.join(models_dir, f_name) for f_name in dmt_models_list
]
dmt_models_list.sort()
plabel_models_list = os.listdir(plabel_dir)
plabel_models_list = [
os.path.join(plabel_dir, f_name) for f_name in plabel_models_list
]
plabel_models_list.sort()
plabel_loss, _ = evaluate_models(plabel_models_list, evaluate_IoU, data)
baselines_loss, _ = evaluate_models(baseline_models_list, evaluate_IoU, data)
loss, _ = evaluate_models(dmt_models_list, evaluate_IoU, data)
np.save(dms_file, loss)
np.save(baseline_file, baselines_loss)
## Logic
baseline_same_label = baselines_loss[15:20] # 0.1 label fraction
baseline_val = np.mean(baseline_same_label)
baseline_ste = 2 * np.std(baseline_same_label) / len(baseline_same_label) ** 0.5
lb = baseline_val - baseline_ste
ub = baseline_val + baseline_ste
plabel_mean = np.mean(plabel_loss)
plabel_ste = 2 * np.std(plabel_loss) / 5**0.5
## Plotting
plot_range = np.linspace(0.45, 1.02, 5)
fig, ax = plt.subplots()
ax.plot(dms_props, loss, color="black", marker="x", linestyle=" ")
ax.fill_between(
plot_range,
[0.823 - 0.005 for _ in plot_range],
[0.823 + 0.005 for _ in plot_range],
color="black",
alpha=0.2,
label="Defualt DMT $\pm 2 SE$",
)
ax.fill_between(
plot_range,
[plabel_mean - plabel_ste for _ in plot_range],
[plabel_mean + plabel_ste for _ in plot_range],
color="navy",
alpha=0.2,
label="Pseudo Label $\pm 2 SE$",
)
ax.plot(
plot_range,
[plabel_mean for _ in plot_range],
color="navy",
linestyle="--",
alpha=0.2,
)
ax.fill_between(
plot_range,
[lb for _ in plot_range],
[ub for _ in plot_range],
color="grey",
alpha=0.2,
label="Baseline $\pm 2 SE$",
)
ax.plot(
plot_range,
[0.823 for _ in plot_range],
color="black",
linestyle="--",
)
ax.plot(
plot_range,
[baseline_val for _ in plot_range],
color="grey",
linestyle="--",
)
ax.set_xlabel("DMS Proportion", fontsize=20)
ax.set_ylabel("IoU", fontsize=20)
ax.set_xticks(dms_props, labels=[str(i) for i in dms_props], fontsize=14)
ax.spines[["right", "top"]].set_visible(False)
ax.set_yticks(ax.get_yticks(), [f"{i:.3f}" for i in ax.get_yticks()], fontsize=14)
ax.set_xlim(0.48, 1.02)
ax.legend()
fig.show()
fig.tight_layout()
fig.savefig(save_file, dpi=300)