-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfunpsy_makedata.m
175 lines (150 loc) · 5.35 KB
/
funpsy_makedata.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function psess=funpsy_makedata(cfg)
%FUNPSY_MAKEDATA Creates the analytic signal for phase synchrony analysis
% session=funpsy_makedata(cfg) returns the session struct
% 'cfg' is a struct with mandatory and optional fields
% cfg.sessionfile = string with the path of the sessionfile
% OPTIONAL:
% cfg.compute_group_mask=1 (or 0); % overrides session settings
% cfg.compute_spectrum=1 (or 0); % overrides session settings
%% COPYRIGHT NOTICE
% IF YOU EDIT OR REUSE PART OF THE BELOW PLEASE DO NOT RE-DISTRIBUTE WITHOUT NOTIFYING THE ORIGINAL AUTHOR
% IF YOU PUBLISH PLEASE QUOTE THE ORIGINAL ARTICLE
%%
processID='funpsy_makedata >> ';
if(exist(cfg.sessionfile))
load(cfg.sessionfile)
else
error([processID 'File ' cfg.sessionfile ' does not exist']);
end
% Test: was the session initialized?
isinit=0;
if(isfield(psess.history,'init'))
if(psess.history.init == 1)
isinit=1;
end
end
if(isinit == 0)
error([processID 'The session ' cfg.sessionfile ' was not initialized']);
end
isAS=0;
if(isfield(psess.history,'ASdatacreated'))
if(psess.history.ASdatacreated == 1)
isAS=1;
end
end
overexists=isfield(cfg,'overwrite');
overwrite=0;
if(overexists==1)
overwrite=cfg.overwrite;
end
if(isAS==1 && overwrite == 1)
fprintf('%s\n',[processID 'The pre-processed data will be overwritten.'])
end
if(isAS==1 && overwrite == 0)
fprintf('%s\n',[processID 'Preprocessed data exist and will not be overwritten.']);
return % should be improved to test other parts like the group mask and the spectrum
end
%% Input checking
% to be added here
%% Standard template
mask=load_nii(psess.coregistered_mask);
maskimg=mask.img;
inmask=find(maskimg>0); % indexes with standard template mask
groupmask=zeros(size(maskimg));
groupmask(inmask)=1;
%% Processing
for s=1:psess.Nsubj
disp([processID 'Loading original data subj ' num2str(s)]);
img=load_nii(psess.indata{s});
siz=size(img.img);
img.img=double(img.img); % making sure we have high precision values
%%%%
% compute individual mask and spectrum if wanted, skipped for now
%%%%
disp([processID '1.Computing analytic signal for subj ' num2str(s)]);
runonce=1;
fprintf('%s',' Slice x = ');
for x = 1:siz(1);
fprintf('%s',[num2str(x) '...']);
for y = 1:siz(2)
for z = 1:siz(3)
if(maskimg(x,y,z)==1)
ts=squeeze(img.img(x,y,z,:)); % the original timeseries
tsnorm=ts-mean(ts); % removing DC for optimal bandpass filtering
T=length(tsnorm);
tsout=conv(psess.filter.b,tsnorm); % produces a T+N-1 length signal
tsout=flipud(conv(psess.filter.b,flipud(tsout)));
if(0) % delay compensation, normal filter [not implemented]
tsout = tsout((psess.filter.N/2+1):(end-psess.filter.N/2));
else
tsout = tsout(length(psess.filter.b):end);
tsout(T+1:end)=[];
end
if(0) % option for filter transient removal
tsout=tsout((psess.filter.N+1):end); % removing N filter transient and N/2 filter tail of factual data
end
if(runonce==1)
% to speed up matlab, initialize the variables at the very first cycle
H=zeros(siz(1),siz(2),siz(3),length(tsout));
if(psess.compute_group_mask)
Pow=zeros(siz(1),siz(2),siz(3));
end
if(psess.compute_spectrum)
Spec=zeros(siz(1),siz(2),siz(3),psess.NFFT)
end
runonce=0;
end
H(x,y,z,:)=hilbert(tsout);
if(psess.compute_group_mask)
pow=sum(ts.^2)/length(ts);
Pow(x,y,z)=pow;
end
if(psess.compute_spectrum)
disp('psess.compute_spectrum to be implemented');
end
end
end
end
end
fprintf('%s\n','.');
disp([processID '1. done']);
disp([processID '2. Saving data in ' psess.outdata{s}]);
for t=1:length(tsout)
filename=[psess.outdata{s} '/' num2str(t) '.mat'];
Hvol=H(:,:,:,t);
save(filename,'Hvol');
end
if(psess.compute_group_mask)
filename=[psess.outdata{s} '/Pow.mat'];
save(filename,'Pow');
p=prctile(Pow(inmask),2);
smask=zeros(size(Pow));
smask(find(Pow>=p))=1;
groupmask=groupmask.*smask;
end
if(psess.compute_spectrum)
%filename=[psess.outdata{s} '/Pow.mat'];
%save(filename,'Pow');
end
disp([processID '2. done']);
end
%% finalizing and updating the session file
psess.T=size(H,4);
psess.history.ASdatacreated=1;
if(psess.compute_group_mask)
psess.history.groupmaskcreated=1;
psess.groupmask=[psess.outpath 'mask.mat'];
save(psess.groupmask,'groupmask');
else
psess.history.groupmaskcreated=0;
end
if(psess.compute_spectrum)
psess.history.spectrumcreated=1;
psess.spectrum=[psess.outpath 'spectrum.mat'];
save(psess.spectrum,'groupSpec');
else
psess.history.spectrumcreated=0;
end
disp([processID '3. updating session: ' psess.session_name]);
save(psess.sessionfile,'psess');
disp([processID '3. done']);