-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_truthfulqa_backup.py
230 lines (175 loc) · 7.92 KB
/
analyze_truthfulqa_backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import matplotlib.pyplot as plt
import json
import pandas as pd
import os
wsFolder = os.path.dirname(os.path.abspath(__file__))
base_folder = f"{wsFolder}/saves/evaluation/dola-oberservation-layer/Meta-Llama-3-8B-Instruct"
def load_pivot_table(field):
layer_list = list(range(1, 33))
row_list = []
for layer_number in layer_list:
with open(f"{base_folder}/layer-{layer_number}.json", "r") as fp:
layer_json = json.load(fp)
for question_number, record in enumerate(layer_json['model_scores']):
if "." not in field:
value = record[field]
else:
value = record
for k in field.split("."):
value = value[k if not k.isdigit() else int(k)]
row_list.append({
"layer_number": layer_number,
"question_number": question_number,
field: value
})
df_pivot = pd.DataFrame(row_list).pivot(
index='question_number',
columns='layer_number',
values=field
)
output_path = os.path.join(
"./saves/analysis", "_".join(field.split(".")) + ".csv")
os.makedirs(os.path.dirname(os.path.abspath(output_path)), exist_ok=True)
df_pivot.to_csv(output_path, index=False)
return df_pivot
def main():
for field in [
"MC1",
"MC2",
"MC3",
"scores-true.0",
"scores-true.1",
"scores-false.0",
"scores-false.1",
]:
print(load_pivot_table(field))
# main()
layer_list = list(range(1, 33))
question_list = list(range(817))
def calculate_MC1_upperbound_with_select_best():
df = load_pivot_table("MC1").reset_index()
ctr_total = 0
ctr_could_right = 0
candidate_layer_list = [*layer_list]
for _, row in df.iterrows():
ctr_total += 1
for layer_number in candidate_layer_list:
if row.iloc[layer_number] > 0:
ctr_could_right += 1
break
print(ctr_could_right, ctr_total, ctr_could_right / ctr_total)
def plot_trace(true_trace_list, false_trace_list, title, ture_label_list, false_label_list, description, subfolder="absolute_logits"):
plt.figure(figsize=(20, 15))
# 绘制第一组线(绿色)
for i, line in enumerate(true_trace_list):
x_values = range(len(line)) # x 值为索引
plt.plot(x_values, line, color='green', label=ture_label_list[i])
# 绘制第二组线(红色)
for i, line in enumerate(false_trace_list):
x_values = range(len(line)) # x 值为索引
plt.plot(x_values, line, color='red', label=false_label_list[i])
# 设置图形细节
plt.xlabel('X-axis (Layer)')
plt.ylabel('Y-axis')
plt.title(title)
plt.suptitle(description, y=0.92, fontsize=10)
plt.legend(loc='best')
plt.grid(True)
output_folder = os.path.join("./saves/figures/analyze_truthfulqa", subfolder)
os.makedirs(output_folder, exist_ok=True)
plt.savefig(os.path.join(output_folder, f"{title}.png"))
plt.close()
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
import numpy as np
def prepare_data(lanes1, lanes2):
"""
将 lanes1 和 lanes2 数据合并,并生成标签:
- lanes1 的标签为 0
- lanes2 的标签为 1
"""
X = np.array(lanes1 + lanes2) # 合并数据
y = np.array([0] * len(lanes1) + [1] * len(lanes2)) # 生成标签
return X, y
def train_and_evaluate_model(X, y):
"""
训练分类模型并进行评估。
"""
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 初始化分类器(使用随机森林)
model = RandomForestClassifier(random_state=42)
# model = LogisticRegression(random_state=42)
# 训练模型
model.fit(X_train, y_train)
# 进行预测
y_pred = model.predict(X_test)
# 输出准确率和分类报告
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
return model
def change_stuff():
layer_list = list(range(1, 33))
true_choice_score_trace = {}
false_choice_score_trace = {}
question_number_list = list(range(817))
question_description_dict = {}
question_ture_label_list = {}
question_false_label_dict = {}
with open(f"{base_folder}/layer-1.json", "r") as fp:
layer_json = json.load(fp)
for question_number, info in enumerate(layer_json['question']):
question_description_dict[question_number] = info['question']
question_ture_label_list[question_number] = info['answer_true'].split("; ")
question_false_label_dict[question_number] = info['answer_false'].split("; ")
for layer_number in layer_list:
with open(f"{base_folder}/layer-{layer_number}.json", "r") as fp:
layer_json = json.load(fp)
for question_number in question_number_list:
if question_number not in true_choice_score_trace:
true_choice_score_trace[question_number] = {}
if question_number not in false_choice_score_trace:
false_choice_score_trace[question_number] = {}
print('layer', layer_number)
output = layer_json['model_scores'][question_number]
for choice, score in enumerate(output['scores-true']):
true_choice_score_trace[question_number].setdefault(
choice, []).append(score)
for choice, score in enumerate(output['scores-false']):
false_choice_score_trace[question_number].setdefault(
choice, []).append(score)
# print('\tscores-true', output['scores-true'],
# 'min', min(output['scores-true']))
# print('\tscores-false',
# output['scores-false'], 'max', max(output['scores-false']))
# print('--------------------')
# for question_number in question_number_list:
# for choice, history in true_choice_score_trace[question_number].items():
# print(history)
# for question_number in question_number_list:
# for choice, history in false_choice_score_trace[question_number].items():
# print(history)
true_choice_history_list = [history for question_number in question_number_list for _, history in true_choice_score_trace[question_number].items()]
false_choice_history_list = [history for question_number in question_number_list for _, history in false_choice_score_trace[question_number].items()]
# 准备数据
X, y = prepare_data(true_choice_history_list, false_choice_history_list)
# 训练和评估模型
model = train_and_evaluate_model(X, y)
# for question_number in question_number_list:
# plot_trace(
# [[(x-history[i-1])/history[i-1] if i != 0 else 0 for i,x in enumerate(history[1:])] for _, history in true_choice_score_trace[question_number].items()],
# [[(x-history[i-1])/history[i-1] if i != 0 else 0 for i,x in enumerate(history[1:])] for _, history in false_choice_score_trace[question_number].items()],
# title=f"Question_{question_number}",
# description=question_description_dict[question_number],
# ture_label_list=question_ture_label_list[question_number],
# false_label_list=question_false_label_dict[question_number],
# subfolder="relative_change_with_previous"
# )
# print("question_true_choice_score_through_layer_history", true_choice_score_trace)
# print("question_false_choice_score_through_layer_history", false_choice_score_trace)
change_stuff()
# calculate_MC_upperbound_with_select_best("MC1")
# calculate_MC_upperbound_with_select_best("MC2")
# calculate_MC_upperbound_with_select_best("MC3")