-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcgan.py
315 lines (253 loc) · 9.6 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import efemarai as ef
from efemarai.notification import fig_to_image
ef.deregister_assertions(ef.assertions.NoNonZeroGradientsAssertion)
# Set random seed for reproducibility
manualSeed = 999
random.seed(manualSeed)
torch.manual_seed(manualSeed)
# Root directory for dataset
dataroot = "data/img_align_celeba"
# outfolder
outf = 'models/'
# netD_path = 'models/netD_epoch_4.pth'
# netG_path = 'models/netG_epoch_4.pth'
netD_path = ''
netG_path = ''
# Batch size during training
batch_size = 8
# Spatial size of training images. All images will be resized to this size.
image_size = 64
# Size of z latent vector (i.e. size of generator input)
nz = 100
# Number of training epochs
num_epochs = 5
# Learning rate for optimizers
lr = 0.0002
# Beta1 hyperparam for Adam optimizers
beta1 = 0.5
# Create the dataset
# Download from https://drive.google.com/drive/folders/0B7EVK8r0v71pTUZsaXdaSnZBZzg
dataset = dset.ImageFolder(root=dataroot,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
# Create the dataloader
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=True)
# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Plot some training images
real_batch = next(iter(dataloader))
fig = plt.figure(figsize=(8, 8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(
np.transpose(
vutils.make_grid(
real_batch[0].to(device)[:64], padding=2, normalize=True
).cpu(),
(1, 2, 0),
)
)
plt.savefig(outf + "/training_images.svg")
ef.notify("Training images", media=torch.from_numpy(fig_to_image(fig)).permute(2, 0, 1))
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
# Generator Code
class Generator(nn.Module):
def __init__(self, ngf=64):
super(Generator, self).__init__()
self.network = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
return self.network(input)
# Create the generator
netG = Generator().to(device)
# Apply the weights_init function to randomly initialize all weights
# to mean=0, stdev=0.2.
netG.apply(weights_init)
if netG_path != '':
netG.load_state_dict(torch.load(netG_path))
print('Loaded network')
class Discriminator(nn.Module):
def __init__(self, ndf=64):
super(Discriminator, self).__init__()
self.network = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(3, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=False),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=False),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=False),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=False),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid(),
)
def forward(self, input):
return self.network(input)
# Create the Discriminator
netD = Discriminator().to(device)
# Apply the weights_init function to randomly initialize all weights
# to mean=0, stdev=0.2.
netD.apply(weights_init)
if netD_path != '':
netD.load_state_dict(torch.load(netD_path))
print('Loaded network')
# Initialize BCELoss function
criterion = nn.BCELoss()
# Create batch of latent vectors that we will use to visualize
# the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
# Establish convention for real and fake labels during training
real_label = 1.0
fake_label = 0.0
# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
# Training Loop
print("Starting Training Loop...")
# Lists to keep track of progress
G_losses = []
D_losses = []
for epoch in range(num_epochs):
# For each batch in the dataloader
for i, data in enumerate(dataloader, 0):
# with ef.scan(i,wait=False, enabled=True or (i==0)):
with ef.scan(i, wait=False, show=i==0, enabled=i==0):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
## Train with all-real batch
netD.zero_grad()
# Format batch
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
# Forward pass real batch through D
output = netD(real_cpu).view(-1)
# Calculate loss on all-real batch
errD_real = criterion(output, label)
## Train with all-fake batch
# Generate batch of latent vectors
noise = torch.randn(b_size, nz, 1, 1, device=device)
# Generate fake image batch with G
fake = netG(noise)
label = torch.full((b_size,), fake_label, dtype=torch.float, device=device)
# Classify all fake batch with D
output = netD(fake.detach()).view(-1)
# Calculate D's loss on the all-fake batch
errD_fake = criterion(output, label)
errD = errD_real + errD_fake
errD.backward()
# Update D
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
# fake labels are real for generator cost
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
# Since we just updated D, perform another forward pass of all-fake batch through D
output = netD(fake).view(-1)
# Calculate G's loss based on this output
errG = criterion(output, label)
# Calculate gradients for G
errG.backward()
# Update G
optimizerG.step()
# Save Losses for plotting later
G_losses.append(errG.item())
D_losses.append(errD.item())
# Output training stats
if i % 200 == 0:
print("[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f"
% (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item()))
# Show some images
fake = netG(fixed_noise)
ef.inspect(fake.detach(), name='Fake Images {}'.format(epoch))
# do checkpointing
torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (outf, epoch))
torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (outf, epoch))
# Show additional stats
fig = plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G")
plt.plot(D_losses, label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.savefig(outf + "/training_loss.svg")
ef.notify("Training Losses", media=torch.from_numpy(fig_to_image(fig)).permute(2, 0, 1))
# Grab a batch of real images from the dataloader
real_batch = next(iter(dataloader))
# Plot the real images
fig = plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(
np.transpose(
vutils.make_grid(
real_batch[0].to(device)[:64], padding=5, normalize=True
).cpu(),
(1, 2, 0),
)
)
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
# Plot the fake images from the last epoch
plt.subplot(1, 2, 2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(vutils.make_grid(fake, padding=2, normalize=True), (1, 2, 0)))
ef.notify("Generated images", media=torch.from_numpy(fig_to_image(fig)).permute(2, 0, 1))
plt.savefig(outf + "/real_vs_gen_images.svg")
plt.show()