-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcli.py
180 lines (142 loc) · 6.31 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import click
import torch
from pathlib import Path
import pkgutil
from imagen_pytorch import load_imagen_from_checkpoint
from imagen_pytorch.version import __version__
from imagen_pytorch.data import Collator
from imagen_pytorch.utils import safeget
from imagen_pytorch import ImagenTrainer, ElucidatedImagenConfig, ImagenConfig
from datasets import load_dataset
import json
def exists(val):
return val is not None
def simple_slugify(text, max_length = 255):
return text.replace('-', '_').replace(',', '').replace(' ', '_').replace('|', '--').strip('-_')[:max_length]
def main():
pass
@click.group()
def imagen():
pass
@imagen.command(help = 'Sample from the Imagen model checkpoint')
@click.option('--model', default = './imagen.pt', help = 'path to trained Imagen model')
@click.option('--cond_scale', default = 5, help = 'conditioning scale (classifier free guidance) in decoder')
@click.option('--load_ema', default = True, help = 'load EMA version of unets if available')
@click.argument('text')
def sample(
model,
cond_scale,
load_ema,
text
):
model_path = Path(model)
full_model_path = str(model_path.resolve())
assert model_path.exists(), f'model not found at {full_model_path}'
loaded = torch.load(str(model_path))
# get version
version = safeget(loaded, 'version')
print(f'loading Imagen from {full_model_path}, saved at version {version} - current package version is {__version__}')
# get imagen parameters and type
imagen = load_imagen_from_checkpoint(str(model_path), load_ema_if_available = load_ema)
imagen.cuda()
# generate image
pil_image = imagen.sample(text, cond_scale = cond_scale, return_pil_images = True)
image_path = f'./{simple_slugify(text)}.png'
pil_image[0].save(image_path)
print(f'image saved to {str(image_path)}')
return
@imagen.command(help = 'Generate a config for the Imagen model')
@click.option('--path', default = './imagen_config.json', help = 'Path to the Imagen model config')
def config(
path
):
data = pkgutil.get_data(__name__, 'default_config.json').decode("utf-8")
with open(path, 'w') as f:
f.write(data)
@imagen.command(help = 'Train the Imagen model')
@click.option('--config', default = './imagen_config.json', help = 'Path to the Imagen model config')
@click.option('--unet', default = 1, help = 'Unet to train', type = click.IntRange(1, 3, False, True, True))
@click.option('--epoches', default = 1000, help = 'Amount of epoches to train for')
@click.option('--text', required = False, help = 'Text to sample with between epoches', type=str)
@click.option('--valid', is_flag = False, flag_value=50, default = 0, help = 'Do validation between epoches', show_default = True)
def train(
config,
unet,
epoches,
text,
valid
):
# check config path
config_path = Path(config)
full_config_path = str(config_path.resolve())
assert config_path.exists(), f'config not found at {full_config_path}'
with open(config_path, 'r') as f:
config_data = json.loads(f.read())
assert 'checkpoint_path' in config_data, 'checkpoint path not found in config'
model_path = Path(config_data['checkpoint_path'])
full_model_path = str(model_path.resolve())
# setup imagen config
imagen_config_klass = ElucidatedImagenConfig if config_data['type'] == 'elucidated' else ImagenConfig
imagen = imagen_config_klass(**config_data['imagen']).create()
trainer = ImagenTrainer(
imagen = imagen,
**config_data['trainer']
)
# load pt
if model_path.exists():
loaded = torch.load(str(model_path))
version = safeget(loaded, 'version')
print(f'loading Imagen from {full_model_path}, saved at version {version} - current package version is {__version__}')
trainer.load(model_path)
if torch.cuda.is_available():
trainer = trainer.cuda()
size = config_data['imagen']['image_sizes'][unet-1]
max_batch_size = config_data['max_batch_size'] if 'max_batch_size' in config_data else 1
channels = 'RGB'
if 'channels' in config_data['imagen']:
assert config_data['imagen']['channels'] > 0 and config_data['imagen']['channels'] < 5, 'Imagen only support 1 to 4 channels L, LA, RGB, RGBA'
if config_data['imagen']['channels'] == 4:
channels = 'RGBA' # Color with alpha
elif config_data['imagen']['channels'] == 2:
channels == 'LA' # Luminance (Greyscale) with alpha
elif config_data['imagen']['channels'] == 1:
channels = 'L' # Luminance (Greyscale)
assert 'batch_size' in config_data['dataset'], 'A batch_size is required in the config file'
# load and add train dataset and valid dataset
ds = load_dataset(config_data['dataset_name'])
trainer.add_train_dataset(
ds = ds['train'],
collate_fn = Collator(
image_size = size,
image_label = config_data['image_label'],
text_label = config_data['text_label'],
url_label = config_data['url_label'],
name = imagen.text_encoder_name,
channels = channels
),
**config_data['dataset']
)
if not trainer.split_valid_from_train and valid != 0:
assert 'valid' in ds, 'There is no validation split in the dataset'
trainer.add_valid_dataset(
ds = ds['valid'],
collate_fn = Collator(
image_size = size,
image_label = config_data['image_label'],
text_label= config_data['text_label'],
url_label = config_data['url_label'],
name = imagen.text_encoder_name,
channels = channels
),
**config_data['dataset']
)
for i in range(epoches):
loss = trainer.train_step(unet_number = unet, max_batch_size = max_batch_size)
print(f'loss: {loss}')
if valid != 0 and not (i % valid) and i > 0:
valid_loss = trainer.valid_step(unet_number = unet, max_batch_size = max_batch_size)
print(f'valid loss: {valid_loss}')
if not (i % 100) and i > 0 and trainer.is_main and text is not None:
images = trainer.sample(texts = [text], batch_size = 1, return_pil_images = True, stop_at_unet_number = unet)
images[0].save(f'./sample-{i // 100}.png')
trainer.save(model_path)