-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_ccgan.lua
372 lines (328 loc) · 13.1 KB
/
train_ccgan.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
require 'torch'
require 'nn'
require 'nngraph'
require 'cunn'
require 'cudnn'
require 'optim'
require 'pl'
require 'paths'
require 'image'
util = require 'utils.base'
----------------------------------------------------------------------
-- parse command-line options
opt = lapp[[
--lrD (default 0.0002) learning rate
--lrG (default 0.0002) learning rate
--learningRateDecay (default 0)
--beta1 (default 0.5) momentum term for adam
-b,--batchSize (default 100) batch size
-g,--gpu (default 0) gpu to use
-s,--save (default "logs/") base directory to save logs
--optimizer (default "adam") "adam" | "sgd" | "adagrad"
--nEpochs (default 100) max training epochs
--seed (default 1) random seed
--imageSize (default 64) image resolution (64 or 96)
--backend (default "cudnn") "cunn" | "cudnn"
--epochSize (default 100000) number of samples per epoch
--modelD (default "vgg") "dcgan" | "vgg"
--modelG (default "dcgan") "dcgan" | "unet"
--lrC (default 1) multiplier on gradient from netC to netD for real data
--patchMin (default 32) min size of hole to cut
--patchMax (default 32) max size of hole to cut
--nPatch (default 1) # of patches to cut out
--curriculum if true increase patch size based on curriculum
--dataset (default "stl") "stl" | "cifar"
--dataPath (default "") path to dataset
--noiseDim (default 100) dim of noise vector when model is stochastic
--stochastic make generation stochastic
--classifyFake if true then pass augmented data through classifier
--classAdversary if true get generator to fool classifier
--nlabelled (default 4000) for cifar10
--fold (default 1) pre-defined fold for STL-10
--reverse if set predict context given hole
]]
os.execute('mkdir -p ' .. opt.save .. '/gen/')
assert(optim[opt.optimizer] ~= nil, 'unknown optimizer: ' .. opt.optimizer)
opt.optimizer = optim[opt.optimizer]
print(opt)
write_opt(opt)
-- setup some stuff
torch.setnumthreads(4)
print('<torch> set nb of threads to ' .. torch.getnumthreads())
torch.setdefaulttensortype('torch.FloatTensor')
cutorch.setDevice(opt.gpu + 1)
print('<gpu> using device ' .. opt.gpu)
torch.manualSeed(opt.seed)
cutorch.manualSeed(opt.seed)
math.randomseed(opt.seed)
opt.geometry = {3, opt.imageSize, opt.imageSize}
paths.dofile(('models/%s_%s_%d.lua'):format(opt.modelG, opt.modelD, opt.imageSize))
local criterionD = nn.BCECriterion()
local criterionC = nn.ClassNLLCriterion()
local confusion = optim.ConfusionMatrix(10)
netG:cuda()
netD:cuda()
netC:cuda()
criterionC:cuda()
criterionD:cuda()
params_G, grads_G = netG:getParameters()
params_D, grads_D = netD:getParameters()
params_C, grads_C = netC:getParameters()
local target_real = 0.9
local target_fake = 0
local label = torch.CudaTensor(opt.batchSize)
local class_targets = torch.CudaTensor(opt.batchSize)
local x = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
local gen = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
local mask = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
local reverse_mask = torch.CudaTensor(opt.batchSize, unpack(opt.geometry))
local noise = torch.CudaTensor(opt.batchSize, opt.noiseDim, 1, 1)
local d1, d2 = unpack(netD:forward({ {x:zero(), mask:zero()}, {x:zero(), reverse_mask:zero()} }))
local zeros1 = torch.CudaTensor(d1:size()):fill(0)
local zeros2 = torch.CudaTensor(d2:size()):fill(0)
local rp = torch.LongTensor(opt.batchSize)
optimStateG = {
learningRate = opt.lrG,
learningRateDecay = opt.learningRateDecay,
beta1 = opt.beta1,
}
optimStateD = {
learningRate = opt.lrD,
learningRateDecay = opt.learningRateDecay,
beta1 = opt.beta1,
}
optimStateC = {
learningRate = opt.lrD,
learningRateDecay = opt.learningRateDecay,
beta1 = opt.beta1,
}
trainLoggerC = optim.Logger(opt.save .. '/trainC.log')
testLoggerC = optim.Logger(opt.save .. '/testC.log')
trainLoggerD = optim.Logger(opt.save .. '/trainD.log')
testLoggerD = optim.Logger(opt.save .. '/testD.log')
opt.translate = true
opt.scale = true
require 'data.data'
trainData:plotData(opt.save .. '/data.png')
local function sampleNoise(z)
z:normal()
end
function sampleMask(mask, reverse_mask)
local mask_val, reverse_val
if opt.reverse then
mask_val = 0
reverse_val = 1
else
mask_val = 1
reverse_val = 0
end
mask:fill(mask_val)
reverse_mask:fill(reverse_val)
for n = 1,mask:size(1) do
for p = 1,math.random(opt.nPatch) do
local patch_x = math.random(opt.patchMin, opt.patchMax)
local patch_y = math.random(opt.patchMin, opt.patchMax)
local sx = math.random(1, mask[n]:size(2) - patch_x)
local sy = math.random(1, mask[n]:size(3) - patch_y)
mask[n][{ {}, {sx,sx+patch_x-1}, {sy,sy+patch_y-1} }]:fill(reverse_val)
reverse_mask[n][{ {}, {sx,sx+patch_x-1}, {sy,sy+patch_y-1} }]:fill(mask_val)
end
end
end
function trainC(dataset)
grads_D:zero()
grads_C:zero()
local top1_real, top1_fake = 0, 0
-- real data
dataset:getBatch(x, class_targets, nil, opt.batchSize)
sampleMask(mask, reverse_mask)
local _, latent = unpack(netD:forward({ {x, mask}, {x, reverse_mask} }))
local out_c = netC:forward(latent)
local err_c = criterionC:forward(out_c, class_targets)
local dout_c = criterionC:backward(out_c, class_targets)
local dlatent = netC:backward(latent, dout_c)
dlatent:mul(opt.lrC)
netD:backward({ {x, mask}, {x, reverse_mask} }, {zeros1, dlatent})
top1_real = classResults(out_c, class_targets)
if opt.classifyFake then
-- fake data
dataset:getBatch(x, class_targets, nil, opt.batchSize)
sampleMask(mask, reverse_mask)
sampleNoise(noise)
gen:copy(netG:forward({ {x, mask}, noise }))
local _, latent = unpack(netD:forward({ {x, mask}, {gen, reverse_mask} }))
local out_c = netC:forward(latent)
local err_c = criterionC:forward(out_c, class_targets)
local dout_c = criterionC:backward(out_c, class_targets)
local dlatent = netC:backward(latent, dout_c)
dlatent:mul(opt.lrC)
netD:backward({ {x, mask}, {gen, reverse_mask} }, {zeros1, dlatent})
top1_fake = classResults(out_c, class_targets)
end
opt.optimizer(function() return 0, grads_D end, params_D, optimStateD)
opt.optimizer(function() return 0, grads_C end, params_C, optimStateC)
return top1_real, top1_fake
end
function trainG(dataset)
for _, m in pairs(netG:listModules()) do zeroBias(m) end
for _, m in pairs(netD:listModules()) do zeroBias(m) end
grads_D:zero()
-- real
label:fill(target_real)
dataset:getBatch(x, class_targets)
sampleMask(mask, reverse_mask)
local out_d, _ = unpack(netD:forward({ {x, mask}, {x, reverse_mask} }))
local errR = criterionD:forward(out_d, label)
local dout_d = criterionD:backward(out_d, label)
netD:backward({ {x, mask}, {x, reverse_mask} }, {dout_d, zeros2})
-- fake
label:fill(target_fake)
dataset:getBatch(x, class_targets)
sampleMask(mask, reverse_mask)
sampleNoise(noise)
gen:copy(netG:forward({ {x, mask}, noise }))
local out_d, _ = unpack(netD:forward({ {x, mask}, {gen, reverse_mask} }))
local errF = criterionD:forward(out_d, label)
local dout_d = criterionD:backward(out_d, label)
netD:backward({ {x, mask}, {gen, reverse_mask} }, {dout_d, zeros2})
opt.optimizer(function() return 0, grads_D end, params_D, optimStateD)
for _, m in pairs(netG:listModules()) do zeroBias(m) end
for _, m in pairs(netD:listModules()) do zeroBias(m) end
grads_G:zero()
-- train encoder/decoder
label:fill(target_real)
netD:forward({ {x, mask}, {gen, reverse_mask} })
criterionD:forward(out_d, label)
local dout_d = criterionD:backward(out_d, label)
local dgen = netD:updateGradInput({ {x, mask}, {gen, reverse_mask} }, {dout_d, zeros2})[2][1]
local dgen = netD:backward({ {x, mask}, {gen, reverse_mask} }, {dout_d, zeros2})[2][1]
netG:backward({ {x, mask}, noise }, dgen)
if opt.classAdversary then
dataset:getBatch(x, class_targets, nil, opt.batchSize)
sampleMask(mask, reverse_mask)
sampleNoise(noise)
gen:copy(netG:forward({ {x, mask}, noise }))
local out_d, latent = unpack(netD:forward({ {x, mask}, {gen, reverse_mask} }))
local out_c = netC:forward(latent)
criterionD:forward(out_d, label)
criterionC:forward(out_c, class_targets)
local dout_d = criterionD:backward(out_d, label)
local dout_c = criterionC:backward(out_c, class_targets)
local dlatent = netC:backward(latent, dout_c)
local dgen = netD:backward({ {x, mask}, {gen, reverse_mask} }, {dout_d, latent})[2][1]
netG:backward({ {x, mask}, noise }, dgen)
end
opt.optimizer(function() return 0, grads_G end, params_G, optimStateG)
opt.optimizer(function() return 0, grads_G end, params_G, optimStateG)
return errR, errF
end
function test(dataset, idx)
local top1_real, top1_fake = 0, 0
-- real
label:fill(target_real)
dataset:getBatch(x, class_targets)
sampleMask(mask, reverse_mask)
local out_d, latent = unpack(netD:forward({ {x, mask}, {x, reverse_mask} }))
local errR = criterionD:forward(out_d, label)
local out_c = netC:forward(latent)
top1_real = classResults(out_c, class_targets)
-- fake data
label:fill(target_fake)
dataset:getBatch(x, class_targets)
sampleMask(mask, reverse_mask)
sampleNoise(noise)
gen:copy(netG:forward({ {x, mask}, noise }))
local out_d, latent = unpack(netD:forward({ {x, mask}, {gen, reverse_mask} }))
local errF = criterionD:forward(out_d, label)
local out_c = netC:forward(latent)
top1_fake = classResults(out_c, class_targets)
return errR, errF, top1_real, top1_fake
end
local function plot(dataset, fname, N)
dataset:getBatch(x)
sampleMask(mask, reverse_mask)
sampleNoise(noise)
util.plot(x, mask, reverse_mask, noise, fname, N, epoch, opt)
end
finalMin = opt.patchMin
finalMax= opt.patchMax --final max patch size for curriculum
if opt.curriculum then
if not opt.reverse and opt.stochastic then
opt.patchMin = opt.patchMax
else
opt.patchMax = opt.PatchMin
end
end
best = 0
while true do
collectgarbage()
epoch = epoch or 1
print('\n<trainer> Epoch ' .. epoch)
local errR, errF, top1_real, top1_fake = 0, 0, 0, 0
local nTrain = opt.epochSize
local counter = 0
for i = 1,nTrain, opt.batchSize do
xlua.progress(i, nTrain)
local err, erf = trainG(trainData)
local rt1, ft1 = trainC(trainData)
errR = errR + err
errF = errF + erf
top1_real = top1_real + rt1
top1_fake = top1_fake + ft1
counter = counter + opt.batchSize
end
errR = errR / counter
errF = errF / counter
local train_acc = 100*top1_real/counter
print('errR = ' .. errR)
print('errF = ' .. errF)
print('real top1 = ' .. train_acc)
if opt.classifyFake then print('fake top1 = ' .. 100*top1_fake/counter) end
trainLoggerC:add{train_acc}
trainLoggerD:add{(errR+errF)/2}
print('\n<tester> Epoch ' .. epoch)
local errR, errF, top1_real, top1_fake = 0, 0, 0, 0
local nTest = valData:size()
local counter = 0
for i = 1,nTest, opt.batchSize do
xlua.progress(i, nTest)
local err, erf, rt1, ft1 = test(valData)
errR = errR + err
errF = errF + erf
top1_real = top1_real + rt1
top1_fake = top1_fake + ft1
counter = counter + opt.batchSize
end
errR = errR / counter
errF = errF / counter
local test_acc = 100*top1_real/counter
print('errR = ' .. errR)
print('errF = ' .. errF)
print('real top1 = ' .. test_acc)
if opt.classifyFake then print('fake top1 = ' .. 100*top1_fake/counter) end
testLoggerC:add{test_acc}
testLoggerD:add{(errR+errF)/2}
plot(valData, 'val')
util.plotAcc(trainLoggerC.symbols[1], testLoggerC.symbols[1], opt.save .. '/accC', 'Classifier Accuracy (epoch ' .. epoch .. ')')
util.plotAcc(trainLoggerD.symbols[1], testLoggerD.symbols[1], opt.save .. '/errD', 'Discriminator error (epoch ' .. epoch .. ')')
util.bistro_log({epoch = epoch, train_acc = train_acc, test_acc = test_acc, errR = errR, errF = errF}, opt)
epoch = epoch + 1
if epoch % 1 == 0 then
print('Saving model: ' .. opt.save .. '/model.t7')
torch.save(opt.save .. '/model.t7', {netD=util.sanitize(netD), netG=util.sanitize(netG), netC=util.sanitize(netC)})
end
if opt.lrC > 0 and test_acc > best then
print('New best accuracy: ' .. test_acc)
print('Saving model: ' .. opt.save .. '/model_best.t7')
torch.save(opt.save .. '/model_best.t7', {netD=util.sanitize(netD), netC=util.sanitize(netC)})
best = test_acc
end
if opt.curriculum and epoch % 5 == 0 then
if not opt.reverse and opt.stochastic then
opt.patchMin = math.max(opt.patchMin - 8, finalMin)
else
opt.patchMax = math.min(opt.patchMax + 8, finalMax)
end
end
if epoch > opt.nEpochs then break end
end