-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathroundSector.ts
321 lines (290 loc) · 10.6 KB
/
roundSector.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import PathProxy from '../../core/PathProxy';
import { isArray } from '../../core/util';
const PI = Math.PI;
const PI2 = PI * 2;
const mathSin = Math.sin;
const mathCos = Math.cos;
const mathACos = Math.acos;
const mathATan2 = Math.atan2;
const mathAbs = Math.abs;
const mathSqrt = Math.sqrt;
const mathMax = Math.max;
const mathMin = Math.min;
const e = 1e-4;
function intersect(
x0: number, y0: number,
x1: number, y1: number,
x2: number, y2: number,
x3: number, y3: number
): [number, number] {
const dx10 = x1 - x0;
const dy10 = y1 - y0;
const dx32 = x3 - x2;
const dy32 = y3 - y2;
let t = dy32 * dx10 - dx32 * dy10;
if (t * t < e) {
return;
}
t = (dx32 * (y0 - y2) - dy32 * (x0 - x2)) / t;
return [x0 + t * dx10, y0 + t * dy10];
}
// Compute perpendicular offset line of length rc.
function computeCornerTangents(
x0: number, y0: number,
x1: number, y1: number,
radius: number, cr: number,
clockwise: boolean
) {
const x01 = x0 - x1;
const y01 = y0 - y1;
const lo = (clockwise ? cr : -cr) / mathSqrt(x01 * x01 + y01 * y01);
const ox = lo * y01;
const oy = -lo * x01;
const x11 = x0 + ox;
const y11 = y0 + oy;
const x10 = x1 + ox;
const y10 = y1 + oy;
const x00 = (x11 + x10) / 2;
const y00 = (y11 + y10) / 2;
const dx = x10 - x11;
const dy = y10 - y11;
const d2 = dx * dx + dy * dy;
const r = radius - cr;
const s = x11 * y10 - x10 * y11;
const d = (dy < 0 ? -1 : 1) * mathSqrt(mathMax(0, r * r * d2 - s * s));
let cx0 = (s * dy - dx * d) / d2;
let cy0 = (-s * dx - dy * d) / d2;
const cx1 = (s * dy + dx * d) / d2;
const cy1 = (-s * dx + dy * d) / d2;
const dx0 = cx0 - x00;
const dy0 = cy0 - y00;
const dx1 = cx1 - x00;
const dy1 = cy1 - y00;
// Pick the closer of the two intersection points
// TODO: Is there a faster way to determine which intersection to use?
if (dx0 * dx0 + dy0 * dy0 > dx1 * dx1 + dy1 * dy1) {
cx0 = cx1;
cy0 = cy1;
}
return {
cx: cx0,
cy: cy0,
x0: -ox,
y0: -oy,
x1: cx0 * (radius / r - 1),
y1: cy0 * (radius / r - 1)
};
}
// For compatibility, don't use normalizeCssArray
// 5 represents [5, 5, 5, 5]
// [5] represents [5, 5, 0, 0]
// [5, 10] represents [5, 5, 10, 10]
// [5, 10, 15] represents [5, 10, 15, 15]
// [5, 10, 15, 20] represents [5, 10, 15, 20]
function normalizeCornerRadius(cr: number | number[]): number[] {
let arr: number[];
if (isArray(cr)) {
const len = cr.length;
if (!len) {
return cr as number[];
}
if (len === 1) {
arr = [cr[0], cr[0], 0, 0];
}
else if (len === 2) {
arr = [cr[0], cr[0], cr[1], cr[1]];
}
else if (len === 3) {
arr = cr.concat(cr[2]);
}
else {
arr = cr;
}
}
else {
arr = [cr, cr, cr, cr];
}
return arr;
}
export function buildPath(ctx: CanvasRenderingContext2D | PathProxy, shape: {
cx: number
cy: number
startAngle: number
endAngle: number
clockwise?: boolean,
r?: number,
r0?: number,
cornerRadius?: number | number[]
}) {
let radius = mathMax(shape.r, 0);
let innerRadius = mathMax(shape.r0 || 0, 0);
const hasRadius = radius > 0;
const hasInnerRadius = innerRadius > 0;
if (!hasRadius && !hasInnerRadius) {
return;
}
if (!hasRadius) {
// use innerRadius as radius if no radius
radius = innerRadius;
innerRadius = 0;
}
if (innerRadius > radius) {
// swap, ensure that radius is always larger than innerRadius
const tmp = radius;
radius = innerRadius;
innerRadius = tmp;
}
const { startAngle, endAngle } = shape;
if (isNaN(startAngle) || isNaN(endAngle)) {
return;
}
const { cx, cy } = shape;
const clockwise = !!shape.clockwise;
let arc = mathAbs(endAngle - startAngle);
const mod = arc > PI2 && arc % PI2;
mod > e && (arc = mod);
// is a point
if (!(radius > e)) {
ctx.moveTo(cx, cy);
}
// is a circle or annulus
else if (arc > PI2 - e) {
ctx.moveTo(
cx + radius * mathCos(startAngle),
cy + radius * mathSin(startAngle)
);
ctx.arc(cx, cy, radius, startAngle, endAngle, !clockwise);
if (innerRadius > e) {
ctx.moveTo(
cx + innerRadius * mathCos(endAngle),
cy + innerRadius * mathSin(endAngle)
);
ctx.arc(cx, cy, innerRadius, endAngle, startAngle, clockwise);
}
}
// is a circular or annular sector
else {
let icrStart;
let icrEnd;
let ocrStart;
let ocrEnd;
let ocrs;
let ocre;
let icrs;
let icre;
let ocrMax;
let icrMax;
let limitedOcrMax;
let limitedIcrMax;
let xre;
let yre;
let xirs;
let yirs;
const xrs = radius * mathCos(startAngle);
const yrs = radius * mathSin(startAngle);
const xire = innerRadius * mathCos(endAngle);
const yire = innerRadius * mathSin(endAngle);
const hasArc = arc > e;
if (hasArc) {
const cornerRadius = shape.cornerRadius;
if (cornerRadius) {
[icrStart, icrEnd, ocrStart, ocrEnd] = normalizeCornerRadius(cornerRadius);
}
const halfRd = mathAbs(radius - innerRadius) / 2;
ocrs = mathMin(halfRd, ocrStart);
ocre = mathMin(halfRd, ocrEnd);
icrs = mathMin(halfRd, icrStart);
icre = mathMin(halfRd, icrEnd);
limitedOcrMax = ocrMax = mathMax(ocrs, ocre);
limitedIcrMax = icrMax = mathMax(icrs, icre);
// draw corner radius
if (ocrMax > e || icrMax > e) {
xre = radius * mathCos(endAngle);
yre = radius * mathSin(endAngle);
xirs = innerRadius * mathCos(startAngle);
yirs = innerRadius * mathSin(startAngle);
// restrict the max value of corner radius
if (arc < PI) {
const it = intersect(xrs, yrs, xirs, yirs, xre, yre, xire, yire);
if (it) {
const x0 = xrs - it[0];
const y0 = yrs - it[1];
const x1 = xre - it[0];
const y1 = yre - it[1];
const a = 1 / mathSin(
// eslint-disable-next-line max-len
mathACos((x0 * x1 + y0 * y1) / (mathSqrt(x0 * x0 + y0 * y0) * mathSqrt(x1 * x1 + y1 * y1))) / 2
);
const b = mathSqrt(it[0] * it[0] + it[1] * it[1]);
limitedOcrMax = mathMin(ocrMax, (radius - b) / (a + 1));
limitedIcrMax = mathMin(icrMax, (innerRadius - b) / (a - 1));
}
}
}
}
// the sector is collapsed to a line
if (!hasArc) {
ctx.moveTo(cx + xrs, cy + yrs);
}
// the outer ring has corners
else if (limitedOcrMax > e) {
const crStart = mathMin(ocrStart, limitedOcrMax);
const crEnd = mathMin(ocrEnd, limitedOcrMax);
const ct0 = computeCornerTangents(xirs, yirs, xrs, yrs, radius, crStart, clockwise);
const ct1 = computeCornerTangents(xre, yre, xire, yire, radius, crEnd, clockwise);
ctx.moveTo(cx + ct0.cx + ct0.x0, cy + ct0.cy + ct0.y0);
// Have the corners merged?
if (limitedOcrMax < ocrMax && crStart === crEnd) {
// eslint-disable-next-line max-len
ctx.arc(cx + ct0.cx, cy + ct0.cy, limitedOcrMax, mathATan2(ct0.y0, ct0.x0), mathATan2(ct1.y0, ct1.x0), !clockwise);
}
else {
// draw the two corners and the ring
// eslint-disable-next-line max-len
crStart > 0 && ctx.arc(cx + ct0.cx, cy + ct0.cy, crStart, mathATan2(ct0.y0, ct0.x0), mathATan2(ct0.y1, ct0.x1), !clockwise);
// eslint-disable-next-line max-len
ctx.arc(cx, cy, radius, mathATan2(ct0.cy + ct0.y1, ct0.cx + ct0.x1), mathATan2(ct1.cy + ct1.y1, ct1.cx + ct1.x1), !clockwise);
// eslint-disable-next-line max-len
crEnd > 0 && ctx.arc(cx + ct1.cx, cy + ct1.cy, crEnd, mathATan2(ct1.y1, ct1.x1), mathATan2(ct1.y0, ct1.x0), !clockwise);
}
}
// the outer ring is a circular arc
else {
ctx.moveTo(cx + xrs, cy + yrs);
ctx.arc(cx, cy, radius, startAngle, endAngle, !clockwise);
}
// no inner ring, is a circular sector
if (!(innerRadius > e) || !hasArc) {
ctx.lineTo(cx + xire, cy + yire);
}
// the inner ring has corners
else if (limitedIcrMax > e) {
const crStart = mathMin(icrStart, limitedIcrMax);
const crEnd = mathMin(icrEnd, limitedIcrMax);
const ct0 = computeCornerTangents(xire, yire, xre, yre, innerRadius, -crEnd, clockwise);
const ct1 = computeCornerTangents(xrs, yrs, xirs, yirs, innerRadius, -crStart, clockwise);
ctx.lineTo(cx + ct0.cx + ct0.x0, cy + ct0.cy + ct0.y0);
// Have the corners merged?
if (limitedIcrMax < icrMax && crStart === crEnd) {
// eslint-disable-next-line max-len
ctx.arc(cx + ct0.cx, cy + ct0.cy, limitedIcrMax, mathATan2(ct0.y0, ct0.x0), mathATan2(ct1.y0, ct1.x0), !clockwise);
}
// draw the two corners and the ring
else {
// eslint-disable-next-line max-len
crEnd > 0 && ctx.arc(cx + ct0.cx, cy + ct0.cy, crEnd, mathATan2(ct0.y0, ct0.x0), mathATan2(ct0.y1, ct0.x1), !clockwise);
// eslint-disable-next-line max-len
ctx.arc(cx, cy, innerRadius, mathATan2(ct0.cy + ct0.y1, ct0.cx + ct0.x1), mathATan2(ct1.cy + ct1.y1, ct1.cx + ct1.x1), clockwise);
// eslint-disable-next-line max-len
crStart > 0 && ctx.arc(cx + ct1.cx, cy + ct1.cy, crStart, mathATan2(ct1.y1, ct1.x1), mathATan2(ct1.y0, ct1.x0), !clockwise);
}
}
// the inner ring is just a circular arc
else {
// FIXME: if no lineTo, svg renderer will perform an abnormal drawing behavior.
ctx.lineTo(cx + xire, cy + yire);
ctx.arc(cx, cy, innerRadius, endAngle, startAngle, clockwise);
}
}
ctx.closePath();
}