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Current State-of-the-Compiler
• OMR has one inliner called the trivial inliner
• Very basic inliner that works by inlining a limited amount of small methods
• No concept of ‘best’ things to inline
• A minimum viable concept of an inliner

• OpenJ9 has a massive & complex inliner called the MultiTargetInliner
• Developed over the last two decades
• VERY Java centric – full of heuristics
• Does a form of guided eager inlining
• Can miss opportunities because of a depth-first approach to searching
• Conflates small method with low benefit with large method with large benefit
• Code is convoluted and hard to reason about / control



How can we do better?
• Inlining provides a number of benefits:
• Reduced function call overheads
• Improved opportunities for optimization

• Inlining can have negative effects:
• Methods can get too large to easily analyze and compile
• Inlining the ‘wrong’ things may have adverse impact on hardware behavior

• Current state-of-the-art inliners are guided using a single metric
• You have a budget, you choose candidates to inline until you fill the budget
• You guide the inliner by inflating/deflating the metric
• Conflates size and opportunity for optimization – optimality can’t be achieved



A New Inliner - Goals
• Separate the notions of cost and benefit
• Benefit should represent the opportunity for improved optimization
• Benefit should also include execution frequency
• The greatest benefit is from optimizations on the hottest execution paths

• Make inliner guidance more scientific and less ‘magical’



Knapsack Packing with Dependencies
• IBM developed an algorithm to solve the knapsack packing with 

dependencies problem – work done by Andrew Craik, Rachel Craik 
and Patrick Doyle
• This algorithm has not been formally proven optimal (yet) but in 

practice it produces optimal solutions
• It is a dynamic programming algorithm that uses two layers of 

backtracking to allow for ‘deoptimization’ during the search for the 
‘best’ inlining solution



Build an Inlining Dependency Tree



Annotate IDT with Cost & Benefit



Postorder Traversal Considering Inlining
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Postorder Traversal Considering Inlining



How to compute benefit?
• Components to consider
• Frequency – if two things have the same cost inline the hotter one
• Optimization Opportunity – if two things have the same hotness pick the one 

that is going to allow the optimizer to do more once inlining is done
• Frequency of a call within a method is represented as the ratio of the 

method entry frequency to the frequency of the callsite
• Frequency factor is multiplied on the path from the IDT root to the 

site being considered to give a multiplier to the benefit



Opportunity for Optimization
• Want to model which optimizations may be ‘unlocked’ by the inlining

of a method
• Idea
• Run an abstract interpreter over program representation computing symbolic 

values / constraints
• At a call abstract interpret the callee and pattern match optimization 

opportunities
• At an opportunity record the constraints, in terms of parameter values, that 

would prove the optimization could happen
• Store this summary of potential transformations in a table
• Intersect the callsite constraints with each potential transformation, sum the 

benefits of all which could apply, scale for frequency



Abstractions – VP Constraints



Optimizations Modeled



Sample Method Summary

Opt Benefit Location Arg #1 Arg #2 Arg #3 Arg #4
IFEQ 1 Callee = 15

Bytecode = 33
[0]

IFLT 1 Callee = 15
Bytecode = 5

[0, INT_MAX]

IFLT 1 Callee = 15
Bytecode = 5

[INT_MIN, -1]



Evaluation
• Abstract interpreter implemented for Java bytecode in OpenJ9
• Optimizations modeled:
• Branch folding
• Null check elimination
• Check cast elimination
• Folding of constant string lengths
• Patrial evaluation

• DaCapo Benchmark suite:
avora, pmd, lusearch, luindex, fop, eclipse, sunflow



Evaluation - Continued
• Each benchmark runs in a separate JVM

• Benchmark iteratively executed to ‘warm’ the JVM up – warm up 
iteration count benchmark specific and determined by average 
iterations for compilation to cease

• Measurements
• Compile time – total cpu time consumed by compilation threads (from vlog)

• Compile memory – total memory consumed during compilation (from vlog)

• Generated Code Size – number of bytes of instructions generated (from vlog)

• Runtime – time to run the final iteration after the warm-up period
(eg steady-state throughput)



Evaluation - Continued
• Compared:
• Baseline: current OpenJ9 heuristic inlininer
• Frequency: new inliner with all methods having benefit 1
• Analysis: new inliner using abstract interpreter benefits & frequency scaling

• Evaluation on x86-64 linux Skylake; heap size set to ensure no global 
GCs, heap size fixed to prevent growth/shrinkage, machine isolated



Runtime
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Generated Code Size



Analysis
• New inliner is more expensive than OpenJ9’s current inliner
• Current inliner does not do a full exploration of state-space

(not guaranteed optimal and may be trapped in local minima)
• Compile-time generally comparable – worst case was ~2x
• Memory was within +20% of baseline

• Abstract interpretation is cheap – most of the cost comes from the 
state space exploration
• New inliner can produce the same performance with less code
• Runtime performance very good considering the limited number of 

optimizations modeled & lack of heuristics



Future Work
• Current propagation of information is ‘down’ the IDT – add ‘upward’ 

propagation for improved information in caller for a given callee
• Model more complex optimizations – current thought is Escape 

Analysis
• Abstract interpreter for trees – OpenJ9 uses bytecodes to save the 

cost of interpreting trees and other OMR languages may want this



Contribution Proposal
• Place the core of the new inliner in OMR with an abstract API for the 

abstract interpreter & its results
• Use OptimizationManager to select inliner based on –Xjit option –

default to current inliners but allow testing of new inliner
• Contribute Abstract Interpreter implementation to OpenJ9 so they 

can continue experiments



Q&A / Discussion


