-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplotCalphaN.m
86 lines (76 loc) · 1.9 KB
/
plotCalphaN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
% general settings
w = 25;
q = 100;
init2D;
costCont = x_0'*Kinf*x_0;
numSteps = 1000000; % steps of the function
allT = linspace(0,t_f,numSteps+1);
uDot = diff(uOpt(allT))./diff(allT); % needed in sampleUmA
vecAlpha = linspace(0,1,100);
N = 512; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec1(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec1,'b');
hold on
N = 256; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec2(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec2,'r');
N = 128; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec3(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec3,'k');
N = 64; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec4(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec4,'b--');
N = 32; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec5(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec5,'r--');
N = 16; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec6(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec6,'k--');
N = 8; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec7(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec7,'g');
N = 4; % number of samples
for iter=1:length(vecAlpha)
mA = vecAlpha(iter);
sampleUmA;
vec8(iter) = cMa;
end
figure(1);
semilogy(vecAlpha,vec8,'m');
clear AD Avec BD Bvec Cvec K0 KD Kvec PD PDvec QD QDvec RD RDvec Uvec Xvec cMa costCont curH curK densToSamp i ind intDens iter k mA minCost lll tk tauK uDot uDotM uOpt
save('CvsAlphaW25q100.mat');