-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstation_selection.py
478 lines (366 loc) · 18.6 KB
/
station_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
"""
Construct the dataset used for training, validation and test.
"""
#====================
# Make deterministic
#====================
from mingpt.utils import set_seed
set_seed(42)
#==========================
# Standard library imports
#==========================
import warnings
# Silence FutureWarnings (something with my numpy version)
warnings.simplefilter(action='ignore', category=FutureWarning)
import datetime
import numpy as np
import os
import pandas as pd
import sys
import time
#===============
# Local imports
#===============
from Dataset import DataPreprocessing, DataNormalization, TrainValidationTestSplit
from general import GetDataVariables, SpecifyFeatures, SpecifyDatasetFile
from global_parameters import *
from read_weather_data import ReadStationOBS, ReadStationGFS, save_NWP_OBS_hdf5, \
save_training_datasets, save_test_datasets, \
save_val_datasets, save_auxiliary_data
from tools import convert_unix_times
if __name__ == '__main__':
# Read station IMEI, time period and lat,lon from file
station_file = list_dir + 'station_list.csv'
df = pd.read_csv(station_file)
# Number of stations
nstation = df.shape[0]
station_idx = np.arange(nstation)
# Get IMEI, start and end dates and lat,lon for all stations/locations
imei = df['imei'].values
start_dates = df['start_date'].values
end_dates = df['end_date'].values
latitudes = df['lat'].values
longitudes = df['lon'].values
# Put the station latitude and longitude in a separate list with only one value for each station
station_lat = latitudes.tolist()
station_lon = longitudes.tolist()
# Get dates in datetime format
start_datetimes = [datetime.datetime.strptime(start_date,fmt_strp) for start_date in start_dates]
end_datetimes = [datetime.datetime.strptime(end_date,fmt_strp) for end_date in end_dates]
# Logicals for saving
Save_GFS_raw = True
Save_OBS_raw = True
Save_GFS_raw_matched = True
Save_OBS_raw_matched = True
Save_GFS_data = True
Save_OBS_data = True
Save_Dataset = True
# Feature inclusion - include all in the dataset
include_features = {}
include_features['OBS_t2m'] = True
include_features['NWP_t2m'] = True
include_features['NWP_u10m'] = True
include_features['NWP_v10m'] = True
include_features['NWP_wspd10m'] = True
include_features['NWP_sin_wsdir10m'] = True
include_features['NWP_cos_wsdir10m'] = True
include_features['NWP_rh2m'] = True
include_features['NWP_q2m'] = True
include_features['NWP_td2m'] = True
include_features['NWP_mslp'] = True
include_features['NWP_lhtfl'] = True
include_features['NWP_shtfl'] = True
include_features['NWP_nswrf'] = True
include_features['NWP_nlwrf'] = True
include_features['NWP_tcc'] = True
include_features['NWP_tp'] = True
include_features['NWP_pwat'] = True
include_features['NWP_gh500'] = True
include_features['NWP_gh700'] = True
include_features['NWP_gh850'] = True
include_features['NWP_t500'] = True
include_features['NWP_t700'] = True
include_features['NWP_t850'] = True
include_features['NWP_u500'] = True
include_features['NWP_u700'] = True
include_features['NWP_u850'] = True
include_features['NWP_v500'] = True
include_features['NWP_v700'] = True
include_features['NWP_v850'] = True
include_features['NWP_w700'] = True
include_features['TIME_sin_doy'] = True
include_features['TIME_cos_doy'] = True
include_features['TIME_sin_hod'] = True
include_features['TIME_cos_hod'] = True
include_features['NWP_wspd500'] = True
include_features['NWP_wspd500'] = True
include_features['NWP_wspd700'] = True
include_features['NWP_wspd700'] = True
include_features['NWP_wspd850'] = True
include_features['NWP_wspd850'] = True
include_features['NWP_sin_wsdir500'] = True
include_features['NWP_cos_wsdir500'] = True
include_features['NWP_sin_wsdir700'] = True
include_features['NWP_cos_wsdir700'] = True
include_features['NWP_sin_wsdir850'] = True
include_features['NWP_cos_wsdir850'] = True
# Specify features
features, Nfeatures = SpecifyFeatures(include_features)
# Get NWP and OBS variables
nwp_names, nwp_types = GetDataVariables('nwp')
obs_names, obs_types = GetDataVariables('obs')
print('Read GFS data')
nwp_files = np.zeros(nstation, dtype=object)
nfc = np.zeros(nstation, dtype=int)
for istation in range(nstation):
# Dates for input file
start_date = datetime.datetime.strptime(start_dates[istation], fmt_strp).strftime(fmt_out)
end_date = datetime.datetime.strptime(end_dates[istation], fmt_strp).strftime(fmt_out)
# The GFS data is saved on the format: days x nfc_cycles (4) x nlead_times
# nfc = days * nfc_cycles
nwp_files[istation] = nwp_data_dir + 'GFS_' + str(imei[istation]) + '_' + start_date + '_' + end_date + '.nc'
# Number of foercasts to loop over - individual for each location
start_datetime = datetime.datetime.strptime(start_date,fmt_out)
end_datetime = datetime.datetime.strptime(end_date,fmt_out)
# Need to change the start datetime since I want to have data for the whole forecast
start_datetime = datetime.datetime(start_datetime.year,start_datetime.month,start_datetime.day,0,0,0)
# Need to change the end datetime since we want to have data for all of the last day
end_datetime = datetime.datetime(end_datetime.year,end_datetime.month,end_datetime.day,0,0,0) \
+ datetime.timedelta(days=1)
diff_day = (end_datetime - start_datetime).total_seconds() / 60 / 60 / 24
# Round up difference in days to get the number of files
ndays = (np.ceil(diff_day) + 1).astype(int)
# Get number of forecasts by multiplying with nfc_cycles
nfc[istation] = ndays * nfc_cycles
t0 = time.time()
GFSdata_raw = ReadStationGFS(nstation,nfc,nlead_time,nwp_names,nwp_types,nwp_files)
print('---Elapsed time: ', time.time()-t0, ' s.')
if Save_GFS_raw:
print('Save raw GFS data')
input_file = data_dir + 'GFSdata_raw.hdf5'
save_NWP_OBS_hdf5(input_file,'GFSdata_raw',GFSdata_raw)
print('Finished saving raw GFS data')
print('Read OBS data')
station_files = np.zeros(nstation, dtype=object)
for istation in range(nstation):
# Dates for input file
start_date = datetime.datetime.strptime(start_dates[istation], fmt_strp).strftime(fmt_out)
end_date = datetime.datetime.strptime(end_dates[istation], fmt_strp).strftime(fmt_out)
station_files[istation] = station_data_dir + 'obs_' + str(imei[istation]) + '_' + start_date + '_' + end_date + '.nc'
t0 = time.time()
OBSdata_raw = ReadStationOBS(nstation,obs_names,obs_types,station_files)
print('---Elapsed time: ', time.time()-t0, ' s.')
# Number of obs for each station
obs_len = [OBSdata_raw[istation].shape[0] for istation in range(nstation)]
if Save_OBS_raw:
print('Save raw OBS data')
input_file = data_dir + 'OBSdata_raw.hdf5'
save_NWP_OBS_hdf5(input_file,'OBSdata_raw',OBSdata_raw)
print('Finished saving raw OBS data')
print('Match GFS data')
t0 = time.time()
for istation in range(nstation):
# Get datetimes
obs_valid_datetime = convert_unix_times(OBSdata_raw[istation]['unix'])[1]
gfs_valid_datetime = convert_unix_times(GFSdata_raw[istation]['valid_unix'])[1]
# OBS datetimes
start_datetime = obs_valid_datetime[0]
end_datetime = obs_valid_datetime[-1]
mask = ( (start_datetime <= gfs_valid_datetime) & (gfs_valid_datetime <= end_datetime) )
# If not all elements are true, discard the forcast
idx = np.array([np.all(mask[ifc,:]) for ifc in range(nfc[istation])])
mask[idx,:] = True
mask[~idx,:] = False
# Get the number of forecasts
nfc[istation] = int(np.sum(mask)/nlead_time)
# Insert the new, matched data
GFSdata_raw[istation] = GFSdata_raw[istation][:][mask].reshape((nfc[istation],nlead_time))
print('---Elapsed time: ', time.time()-t0, ' s.')
print('Match OBS data')
t0 = time.time()
for istation in range(nstation):
# Get datetimes
obs_valid_datetime = convert_unix_times(OBSdata_raw[istation]['unix'])[1]
gfs_valid_datetime = convert_unix_times(GFSdata_raw[istation]['valid_unix'])[1]
# NWP datetimes
start_datetime = gfs_valid_datetime[0,0]
end_datetime = gfs_valid_datetime[-1,-1]
mask = ( (start_datetime <= obs_valid_datetime) & (obs_valid_datetime <= end_datetime) )
# Get number of observations
obs_len[istation] = np.sum(mask)
OBSdata_raw[istation] = OBSdata_raw[istation][:][mask]
print('---Elapsed time: ', time.time()-t0, ' s.')
# Need to save the matched data as well
if Save_GFS_raw_matched:
print('Save matched raw GFS data')
input_file = data_dir + 'GFSdata_raw_matched.hdf5'
save_NWP_OBS_hdf5(input_file,'GFSdata_raw',GFSdata_raw)
print('Finished saving matched GFS data')
if Save_OBS_raw_matched:
print('Save matched raw OBS data')
input_file = data_dir + 'OBSdata_raw_matched.hdf5'
save_NWP_OBS_hdf5(input_file,'OBSdata_raw',OBSdata_raw)
print('Finished saving matched OBS data')
# Re-arrange NWP data array so that we get it in the same format as the OBS data
nwp_array_type_list = []
for i in range(len(nwp_names)):
nwp_array_type_list.append((nwp_names[i], nwp_types[i]))
# Re-arrange OBS data so that we get it in the same format as the NWP data
# Remove datetime field
idx = obs_names.index('datetime')
obs_names_less = obs_names.copy()
obs_names_less.pop(idx)
obs_types_less = obs_types.copy()
obs_types_less.pop(idx)
obs_array_type_list = []
for i in range(len(obs_names_less)):
obs_array_type_list.append((obs_names_less[i], obs_types_less[i]))
# Initialize arrays
GFSdata = []
OBSdata = []
print('Get GFS data on OBS format and OBS data on GFS format')
t0 = time.time()
for istation in range(nstation):
# Get GFS and OBS valid times
gfs_valid_time = convert_unix_times(GFSdata_raw[istation]['valid_unix'])[0].T
obs_valid_time = convert_unix_times(OBSdata_raw[istation]['unix'])[0].T
GFSdata_tmp = np.zeros((obs_len[istation]),dtype=nwp_array_type_list)
OBSdata_tmp = np.zeros((nfc[istation],nlead_time),dtype=obs_array_type_list)
for ifc in range(nfc[istation]-1):
# GFS data
#----------
i0 = int(ifc*fc_update/fc_output_interval)
i1 = i0 + int(fc_update/fc_output_interval)
iraw0 = 0#1#
iraw1 = iraw0 + int(fc_update/fc_output_interval)
for i,name in enumerate(nwp_names):
GFSdata_tmp[name][i0:i1] = GFSdata_raw[istation][name][ifc,iraw0:iraw1]
# OBS data
#----------
# Get the observations with the same time as for the forecast!
obsidx = np.searchsorted(obs_valid_time,gfs_valid_time[ifc,:])
for i,name in enumerate(obs_names_less):
OBSdata_tmp[name][ifc,:] = OBSdata_raw[istation][name][obsidx]
# GFS data
#----------
# Special consideration for the last forecast
for i,name in enumerate(nwp_names):
GFSdata_tmp[name][i1:] = GFSdata_raw[istation][name][nfc[istation]-1,:]
# Append data
GFSdata.append(GFSdata_tmp)
# OBS data
#---------
obsidx = np.searchsorted(obs_valid_time,gfs_valid_time[nfc[istation]-1,:])
for i,name in enumerate(obs_names_less):
OBSdata_tmp[name][nfc[istation]-1,:] = OBSdata_raw[istation][name][obsidx]
# Append data
OBSdata.append(OBSdata_tmp)
del gfs_valid_time, GFSdata_tmp, obs_valid_time, OBSdata_tmp
print('---Elapsed time: ', time.time()-t0, ' s.')
if Save_OBS_data:
print('Save OBS data on NWP format')
input_file = data_dir + 'OBSdata.hdf5'
save_NWP_OBS_hdf5(input_file,'OBSdata',OBSdata)
print('Finished saving OBS data')
if Save_GFS_data:
print('Save GFS data on OBS format')
input_file = data_dir + 'GFSdata.hdf5'
save_NWP_OBS_hdf5(input_file,'GFSdata',GFSdata)
print('Finished saving GFS data')
print('Convert the GFSdata and OBSdata_raw to 1d arrays')
Ntot = sum(obs_len)
# GFS structured array
nwp_array_type_list = []
for i in range(len(nwp_names)):
nwp_array_type_list.append((nwp_names[i], nwp_types[i]))
# OBS structured array
idx = obs_names.index('datetime')
obs_names_less = obs_names.copy()
obs_names_less.pop(idx)
obs_types_less = obs_types.copy()
obs_types_less.pop(idx)
obs_array_type_list = []
for i in range(len(obs_names_less)):
obs_array_type_list.append((obs_names_less[i], obs_types_less[i]))
# Create 1d array with station index for all stations
station_index = [[istation]*obs_len[istation] for istation in range(nstation)]
station_index_1d = np.hstack(station_index).squeeze()
# Define the datasets and features
# + data_shifted = Data with the newest forecast only
# + extra_data_shifted = Data with the newest forecast only - time variables
# + data_raw = Data on raw NWP form
# + extra_data_raw = Data on raw NWP form - time variables
t0 = time.time()
OBSdata_raw, GFSdata_raw, OBSdata, GFSdata, data_shifted, extra_data_shifted, data_shifted_1d, \
data_raw, extra_data_raw, station_index_shifted, station_index_shifted_1d = \
DataPreprocessing(OBSdata_raw,GFSdata_raw,OBSdata,GFSdata,station_index,features,verbose=False,clean=True)
del station_index, station_index_1d
# Delete OBS and GFS data since it's no longer necessary to have them
del OBSdata_raw, GFSdata_raw, OBSdata, GFSdata
print(' ---Elapsed time DataPreprocessing: ', time.time() - t0, ' s.')
# Define train, validation and test datasets
t0 = time.time()
data_shifted, extra_data_shifted, data_raw, extra_data_raw, station_index_shifted, station_index_shifted_1d, data_shifted_1d, \
data_train, extra_data_train, data_train_1d, data_raw_train, extra_data_raw_train, station_train_index_shifted, station_train_index_shifted_1d, \
data_val, extra_data_val, data_val_1d, data_raw_val, extra_data_raw_val, station_val_index_shifted, station_val_index_shifted_1d, \
data_test, extra_data_test, data_test_1d, data_raw_test, extra_data_raw_test, station_test_index_shifted, station_test_index_shifted_1d, \
station_train, station_val, station_test = TrainValidationTestSplit(imei,nstation_train,nstation_val,nstation_test,data_shifted,extra_data_shifted, \
data_shifted_1d,data_raw,extra_data_raw,station_index_shifted,station_index_shifted_1d,\
verbose=False,clean=True)
print(' ---Elapsed time TrainTestValidationSplit: ', time.time() - t0, ' s.')
# Delete data that is no longer needed
del data_shifted, extra_data_shifted, data_shifted_1d, data_raw, extra_data_raw, station_index_shifted, station_index_shifted_1d
# The normalization should be based on the training data exclusively
t0 = time.time()
data_train, data_raw_train, data_train_1d, data_val, data_raw_val, data_val_1d, \
data_test, data_raw_test, data_test_1d, mu, std = \
DataNormalization(data_train,data_raw_train,data_train_1d,data_val,data_raw_val,data_val_1d, \
data_test,data_raw_test,data_test_1d,Nfeatures,features,verbose=False)
print(' ---Elapsed time DataNormalization: ', time.time() - t0, ' s.')
if Save_Dataset:
print('Save Datasets')
# Delete unnecessary data
del station_train_index_shifted, station_val_index_shifted, station_test_index_shifted
# Specify output file names
dataset_file_generic, dataset_file_train, dataset_file_val, dataset_file_test = \
SpecifyDatasetFile(data_dir,include_features,nstation_train,nstation_val,nstation_test,input_days)
print(' ---Training data')
# ---Save the training data in hdf5 format
# Create data list and group names
data_list = [data_train, extra_data_train, data_raw_train, extra_data_raw_train]
# Delete already-used data
del data_train, extra_data_train, data_raw_train, extra_data_raw_train
data_groups = ['data_train', 'extra_data_train', 'data_raw_train', 'extra_data_raw_train']
# Save training datasets
save_training_datasets(dataset_file_train,data_list,data_groups,data_train_1d,station_train_index_shifted_1d)
# Delete already-used data
del data_list, data_groups, data_train_1d, station_train_index_shifted_1d
print(' ---Validation data')
# ---Save the validation data in hdf5 format
# Create data list and group names
data_list = [data_val, extra_data_val, data_raw_val, extra_data_raw_val]
# Delete already-used data
del data_val, extra_data_val, data_raw_val, extra_data_raw_val
data_groups = ['data_val', 'extra_data_val', 'data_raw_val', 'extra_data_raw_val']
# Save the validation datasets
save_val_datasets(dataset_file_val,data_list,data_groups,data_val_1d,station_val_index_shifted_1d)
# Delete already-used data
del data_list, data_groups, data_val_1d, station_val_index_shifted_1d
print(' ---Test data')
# Save the test data in hdf5 format
# Save test_dataset separately and then remove since it seems to take too much memory otherwise
print(' ---Saving test_dataset')
# Create data list and group names for the rest of the test data
data_list = [data_test, extra_data_test, data_raw_test, extra_data_raw_test]
# Delete already-used data
del data_test, extra_data_test, data_raw_test, extra_data_raw_test
data_groups = ['data_test', 'extra_data_test', 'data_raw_test', 'extra_data_raw_test']
# Save test datasets
save_test_datasets(dataset_file_test,data_list,data_groups,data_test_1d)
# Delete already-used data
del data_list, data_groups, data_test_1d
print(' ---Generic data')
save_tuple = (mu, std, station_train, station_val, station_test)
save_auxiliary_data(dataset_file_generic,save_tuple)
del save_tuple
print('station_selection done')