-
Notifications
You must be signed in to change notification settings - Fork 1
/
master.tex
5337 lines (4683 loc) · 168 KB
/
master.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% There are two combinations to run this document: with/without
% solutions visible
\newif\ifSolutions % \Solutionstrue
\documentclass[oneside]{book}
\author{Dr.\ W. Ethan Duckworth\\ Loyola University Maryland}
\title{{\Huge \bf MA 151: Applied Calculus}}
\date{\the\year}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages and package settings/options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[text={6in,9in}]{geometry}
\pagestyle{headings}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{afterpage}
\usepackage{cancel}
\usepackage{url}
\usepackage{amsmath}
\usepackage{multicol}
\usepackage{tikz}
\usepackage{units}
\usepackage{calc}
\usepackage{verbatim}
\usepackage{amsthm}
\usepackage{enumitem}
\usepackage{hyperref}
\graphicspath{{graphics/}{Images/}}
\usetikzlibrary{shapes,% allows nodes to be ellipses, etc.
fit,% fits ellipses to previously defined nodes
matrix,% allows tikzpictures to be defined as grids
decorations.pathreplacing, % defines brace decoration
patterns} % allows fill patterns
\tikzset{point/.style={fill=black,circle,inner sep =1.5pt}}
\newcommand{\markpoint}{node[point]{}}
\tikzset{every node/.style={font=\footnotesize}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Math Constructions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\deriv}[2]{\frac{d#1}{d#2}}
\newcommand{\ddx}{\deriv {}x}
\newcommand{\ddq}{\deriv {}q}
\newcommand{\ddt}{\deriv {}t}
\newcommand{\dx}{\,dx}
\newcommand{\du}{\,du}
\newcommand{\sfrac}[2]{\frac{\,#1\,}{#2}}
\newcommand{\inv}{^{-1}}
\newcommand{\eval}{\Big|}
\newcommand{\abs}[1]{\left\lvert {#1} \right\rvert}
% The following command is for showing double distribution,
% i.e. "FOIL". The first one is optional and contains the two
% operations inside the parentheses, the next four are the terms
\newcommand{\foil}[5][{+,+}]
% the optional argument is for the operations between the terms + and
% + is the default.
{%
\def\firstop##1,##2{##1} % this grabs the first operator
\def\secondop##1,##2{##2} % this grabs the second operator
% Note the need to use pgfmatrixnextcell instead of & since we are
% inside another macro. Solution is from
% http://tex.stackexchange.com/questions/1111/problem-with-defining-shortcuts-for-tikz-matrices
\begin{tikzpicture}[baseline=-2pt,
every node/.style={font=\normalsize}
]
\matrix
{%
\path node (a) {$\llap{(\kern0.1ex}#2$};
\pgfmatrixnextcell \node{$\firstop#1$};
\pgfmatrixnextcell \node (b){$#3)$};
\pgfmatrixnextcell \node (c) {$(#4$};
\pgfmatrixnextcell \node{$\secondop#1$};
\pgfmatrixnextcell \node (d) {$#5\rlap{\kern0.1ex)}$};\\ }; % this matches the brace after "matrix"
\draw[red,->] (a.north) to[out=30,in=150] (c.north);
\draw[red,->] (a.north) to[out=35,in=145] (d.north);
\draw[foilgreen,->] (b.south) to[out=-30,in=-150] (c.south);
\draw[foilgreen,->] (b.south) to[out=-35,in=-145] (d.south);
\end{tikzpicture}
} % this matches the brace after newcommand
% The next command makes Big Parentheses around something. Note that
% it makes _bigger_ parentheses than does \left( ... \right)
\newcommand{\BigParens}[1]
{\left(\raisebox{0in}[1.25\height]{$#1$}\right)}
% The next fancy command colors different parts of a formula to show
% the relevant parts for the chain rule: e.g. the inside, the outside,
% etc.
\colorlet{foilgreen}{green!50!black}
\colorlet{outsidecolor}{red!90!black}
\colorlet{insidecolor}{blue}
\colorlet{derivcolor}{green!70!black}
\newcommand{\inside}[1]{{\color{insidecolor}#1}}
% #1 = shift for target to g(x), format: (a,b) for shift lengths or (a:b) for polar
% #2 = lhs of chain rule
% #3 = f'(g(x))
% #4 = g'(x)
\newcommand{\chain}[4][(0ex,0ex)]{
\begin{tikzpicture}[every node/.style={font=\normalsize}]
\node[name = lhs, anchor = base west] at (0,0) {$#2=$};
\node[name = outside, anchor = base west, node distance = 0pt, inner sep = 0pt]
at (lhs.base east) {$\color{outsidecolor}#3$};
\node[name = deriv inside, anchor = base west, node distance = 0pt, inner sep = 0pt]
at (outside.base east) {${}\cdot {\color{derivcolor}#4}$};
%
\node[name = outside target] at (outside.south west){};
\node[shift={#1},name = inside target] at (outside.south){};
\node[name = deriv inside target] at (deriv inside.south){};
%
\node[name = text for outside, node distance = 2cm, below left of = outside target] {\begin{tabular}{c}deriv. of\\ outside\end{tabular}};
\node[name = text for inside, node distance = 2cm, below of = inside target] {\begin{tabular}{c}don't\\ change\\inside\end{tabular}};
\node[name = text for deriv inside, node distance = 2cm, below right of = deriv inside target] {\begin{tabular}{c}deriv. of\\ inside\end{tabular}};
\draw[->] (text for outside) -- (outside target.south west);
\draw[->] (text for inside) -- (inside target);
\draw[->] (text for deriv inside) -- (deriv inside target);
\end{tikzpicture}
}
% Sigh, the above doesn't work too well for \ln examples, because the
% derivative of the outside is not in front, it's in a fraction.
\newcommand{\lnchain}[4][(0ex,0ex)]{
\begin{tikzpicture}[every node/.style={font=\normalsize}]
\node[name = lhs, anchor = base west] at (0,0) {$#2=$};
\node[name = outside, anchor = base west, right of = lhs, inner sep = 0pt] at (lhs.base east) {$\color{outsidecolor}#3$};
\node[name = deriv inside, anchor = base west, node distance = 0pt, inner sep = 0pt, ] at (outside.base east) {${}\cdot {\color{derivcolor}#4}$};
%
\node[name = outside target] at (outside.west){};
\node[shift={#1},name = inside target] at (outside.south){};
\node[name = deriv inside target] at (deriv inside.south){};
%
\node[name = text for outside, node distance = 2cm, below left of = outside target] {\begin{tabular}{c}deriv. of\\ outside\end{tabular}};
\node[name = text for inside, node distance = 2cm, below of = inside target] {\begin{tabular}{c}don't\\ change\\inside\end{tabular}};
\node[name = text for deriv inside, node distance = 2cm, below right of = deriv inside target] {\begin{tabular}{c}deriv. of\\ inside\end{tabular}};
\draw[->,bend right] (text for outside) -- (outside target.west);
\draw[->] (text for inside) -- (inside target);
\draw[->] (text for deriv inside) -- (deriv inside target);
\end{tikzpicture}
}
% Examples
% \chain[(1ex,0ex)]{\ddx \sin(x^2+1)}{\cos(\inside{x^2+1})}{2x}
% \chain{\ddx \sqrt{4x^2+x}}{\frac{1}{2\sqrt{\inside{4x^2+x}}}}{(8x+1)}
% \chain[(0.5ex,0.5ex)]{\ddx e^{-x^2}_{}}{e^{\inside{-x^2}}_{}}{(-2x)}
% the following 6 commands are all the possible combinations of
% Inrease/Decrease with Concave Up/Down/Straight
\newcommand{\IncreaseStraight}{\begin{tikzpicture}[very thick,baseline=0.5cm]
\draw[scale=0.9] (0,0) -- (1,1);
\end{tikzpicture}}
\newcommand{\IncreaseConcaveUp}{\begin{tikzpicture}[very thick,baseline=0.35cm]
\draw (0,0) arc (280:350:1);
\end{tikzpicture}}
\newcommand{\IncreaseConcaveDown}{\begin{tikzpicture}[very thick,baseline=-0.5cm]
\draw[scale=-1] (0,0) arc (280:350:1);
\end{tikzpicture}}
\newcommand{\DecreaseStraight}{\begin{tikzpicture}[very thick,baseline=-0.5cm]
\draw[scale=0.9] (0,0) -- (1,-1);
\end{tikzpicture}}
\newcommand{\DecreaseConcaveUp}{\begin{tikzpicture}[very thick,baseline=-0.5cm]
\draw (0,0) arc (190:260:1);
\end{tikzpicture}}
\newcommand{\DecreaseConcaveDown}{\begin{tikzpicture}[very thick,baseline=0.35cm]
\draw[scale=-1] (0,0) arc (190:260:1);
\end{tikzpicture}}
\newcommand{\GenericConcaveDown}{\begin{tikzpicture}[very thick]
\draw (0,0) parabola bend (0.5,0.5) (1,0);
\end{tikzpicture}}
\newcommand{\GenericConcaveUp}{\begin{tikzpicture}[very thick,yscale=-1]
\draw (0,0) parabola bend (0.5,0.5) (1,0);
\end{tikzpicture}}
% #2 = position
% #1 = optional label
% default option -> position = label
\newcommand{\xtickmark}[2][]
{\ifx#1\relax\relax
\draw [pin distance = 5pt,inner sep = 0pt,outer sep = 0pt, pin edge
= thick](#2,0)
node[pin={[inner sep = 5pt]below:$#2$}]{}
\else
\draw [pin distance = 5pt,inner sep =0pt, outer sep = 0pt, pin edge
= thick](#2,0)
node[pin={[inner sep = 5pt]below:$#1$}]{}
\fi}
\newcommand{\ytickmark}[2][]
{\ifx#1\relax\relax
\draw[pin distance = 5pt,inner sep = 0pt, outer sep = 0pt, pin edge
= thick](0,#2)
node[pin={[inner sep = 2pt]left:$#2$}]{}
\else
\draw[pin distance = 5pt,inner sep = 0pt, outer sep = 0pt, pin edge
= thick](0,#2)
node[pin={[inner sep = 2pt]left:$#1$}]{}
\fi}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Document Formatting: theorems, solutions, list formatting, etc.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Needs the amsmath package
\allowdisplaybreaks[4]
\everymath{\displaystyle}
\newcommand{\blank}{\underline{\hspace{0.5in}}}
\newcommand{\define}[1]{\textbf{#1}}
% Redefine the footnote to make an asterisk.
\makeatletter
\def\@makefnmark{$\,{}^*$}
\makeatother
% Needs the enumitem package
\setlist[enumerate]{listparindent=15pt,label=(\alph{*})}
% Needs the amsthm package
\theoremstyle{definition}
\newtheorem{example}{Example}
% this needs to come after hyperref to preserve unique hyperref labels
% for eaxmples. I tred \numberwithin, but that made \the\example
% include section numbers
\makeatletter
\@addtoreset{example}{section}
\makeatother
\swapnumbers
\newtheorem{definition}{Definition}[section]
\newtheorem{test}[definition]{Test}
\newtheorem*{discussion}{Class Discussion}
\newtheoremstyle{solution}%
{3pt}% space above
{3pt}% space below
{}% body font
{}% indent amount
{\itshape}% theorem head font
{:}% punctuation after theorem head
{0.5em}% space after theorem head
{}% theorem head spec
\ifSolutions
% To show only show something in non-solution mode, e.g., blank
% graph paper for a student to graph on.
\newenvironment{beforesolutions}{\comment}{\endcomment}
% Similarly, sometimes to format the page better for handouts, I'll
% put a pagebreak. This should be turned off when solutions are
% present.
\newcommand{\handoutpagebreak}{}
\theoremstyle{solution}
\newtheorem*{solution}{Solution}
\newcommand{\graphlabel}[2]{\makebox[0in][r]{#1}{\raisebox{-\height+12pt}{#2}}}
\newcommand{\handoutfill}{}
\newcommand{\handoutitemsep}{}
\else
\newenvironment{beforesolutions}{}{}
\newcommand{\handoutpagebreak}{\newpage}
\newenvironment{solution}{\vspace{2in}\comment}{\endcomment}
\newcommand{\graphlabel}[2]{#2}
\newcommand{\handoutfill}{\vfill}
\newcommand{\handoutitemsep}{\itemsep=\fill}
\fi
%%%%%%%%%%%%
\begin{document}
\maketitle
\enlargethispage{2in}
\begin{minipage}{\textwidth}
\tableofcontents
\end{minipage}
\setcounter{chapter}{-1}
\chapter{Brief Review}
\section{Linear Equations}
\handoutpagebreak
\begin{example}
Most people's favorite version of a linear equation is this:
$$
y =mx + b\qquad \text{``slope-intercept form''}
$$
where
\begin{align*}
m & = \text{slope }\quad \parbox[t]{3in}{(i.e.\ the ratio of how
much the line rises,
divided by how much the line goes horizontally),}\\
b & = y\text{-intercept \quad (i.e. where the
line hits the $y$-axis).}
\end{align*}
Graph the following lines on the graphs paper below.
\begin{enumerate}
\item $y=3x+2$
\item $y=-\frac{1}{2}x -5$
\item $y=-\frac{2}{3}x+5$
\item $y=5x-7$
\end{enumerate}
\begin{beforesolutions}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-5) grid (5,5);
\draw (-5,5) node[fill=white]{(a)};
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-5)--(0,5);
\end{tikzpicture}
\hspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-5) grid (5,5);
\draw (-5,5) node[fill=white]{(b)};
\draw[very thick,->,yshift=3cm](-5,0)--(5,0);
\draw[very thick,->](0,-5)--(0,5);
\end{tikzpicture}
\vspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-2) grid (5,8);
\draw (-5,8) node[fill=white]{(c)};
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-2)--(0,8);
\end{tikzpicture}
\hspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-9) grid (5,0);
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-9)--(0,1);
\draw (-5,0) node[fill=white]{(d)};
\end{tikzpicture}
\end{beforesolutions}
\end{example}
\begin{solution}
\mbox{}\par
\begin{tikzpicture}[scale=0.5]
\draw (-5,-5) grid (5,5);
\draw (-5,5) node[fill=white]{(a)};
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-5)--(0,5);
\clip (-5,-5) rectangle (5,5);
\draw(-5,-13) -- (5,17);
\end{tikzpicture}
\hspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-5) grid (5,5);
\draw (-5,5) node[fill=white]{(b)};
\draw[very thick,->,yshift=3cm](-5,0)--(5,0);
\draw[very thick,->](0,-5)--(0,5);
\clip (-5,-5) rectangle (5,5);
\draw[yshift=3cm](-5,-2.5) -- (5,-7.5);
\end{tikzpicture}
\vspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-2) grid (5,8);
\draw (-5,8) node[fill=white]{(c)};
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-2)--(0,8);
\clip (-5,-2) rectangle (5,8);
\draw(-5,8.333) -- (5,1.666);
\end{tikzpicture}
\hspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-9) grid (5,0);
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-9)--(0,1);
\draw (-5,0) node[fill=white]{(d)};
\clip (-5,-10) rectangle (5,0);
\draw(-5,-32) -- (5,18);
\end{tikzpicture}
\end{solution}
\handoutpagebreak
\begin{example}
The following equations all define a line, but are not in the usual
slope-intercept form, i.e.\ of the form $y=mx+b$.
Turn the following equations into slope-intercept, and then graph them below
\begin{enumerate}
\item $2y + x = - 10$
\item $3y + 2x = 15$
\item $y = 5(x+2) -17$
\item $y -10 = 3x - 8$
\end{enumerate}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-5) grid (5,5);
\draw (-5,5) node[fill=white]{(a)};
\draw[very thick,->,yshift=3cm](-5,0)--(5,0);
\draw[very thick,->](0,-5)--(0,5);
\end{tikzpicture}
\hspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-2) grid (5,8);
\draw (-5,8) node[fill=white]{(b)};
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-2)--(0,8);
\end{tikzpicture}
\vspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-9) grid (5,0);
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-9)--(0,1);
\draw (-5,0) node[fill=white]{(c)};
\end{tikzpicture}
\hspace{1in}
\begin{tikzpicture}[scale=0.5]
\draw (-5,-5) grid (5,5);
\draw (-5,5) node[fill=white]{(d)};
\draw[very thick,->](-5,0)--(5,0);
\draw[very thick,->](0,-5)--(0,5);
\end{tikzpicture}
\end{example}
\begin{solution}
\begin{enumerate}
\item \begin{align*}
2y + x & = -10\\
2y & = -x -10\\
y & = -\frac{1}{2} -5
\end{align*}
This is the same as part (b) in the previous example, and so this is
graphed above.
\item
\begin{align*}
3y + 2x & = 15\\
3y & = -2x + 15\\
y & = -\frac 23 x +5
\end{align*}
This is the same as part (c) in the previous example, and so this is
graphed above.
\item
\begin{align*}
y &= 5(x+2)-17\\
y & = 5x + 10 - 17\\
y & = 5x - 7
\end{align*}
This is the same as part (d) in the previous example, and so this is
graphed above.
\item
\begin{align*}
y - 10 & = 3x-8 \\
y & = 3x -8 +10\\
y & = 3x +2
\end{align*}
This is the same as part (a) in the previous example, and so this is
graphed above.
\end{enumerate}
\end{solution}
\begin{example}
In some problems the quickest way to write a linear equation is like
this
$$
y = m(x-x_0) + y_0 \qquad \text{``point-slope
form\footnotemark''}
$$
\footnotetext{Sometimes people write point-slope as
$y-y_0 = m(x-x_0)$. That's ok, there's more than one way to write
it. But the version I've given is more useful because it's written
as an explicit function, and in any case it's the version I want you to use.}
where
\begin{align*}
m & = \text{a given slope},\\
(x_0,y_0) & = \text{a given point}.
\end{align*}
\begin{enumerate}
\handoutitemsep
\item Find the point-slope form equation of the line through the point
$(-2,3)$ with slope $5$.
\item Turn the equation from (a) into slope-intercept form.
\item
Find the point-slope form equation of the line through the point
$(-2,3)$ with slope $-1/2$.
\item Turn the equation from (c) into slope-intercept form.
\handoutfill
\end{enumerate}
\end{example}
\begin{solution}
\begin{enumerate}
\item \begin{align*}
y & = m(x-x_0) + y_0\\
y & = 5(x+2)+3
\end{align*}
\item
\begin{align*}
y & = 5(x+2)+3\\
y & = 5x+10 + 13\\
y & = 5x + 23
\end{align*}
\item
\begin{align*}
y & = m(x-x_0) + y_0\\
y & = -\frac{1}{2}(x+2)+3\\
\end{align*}
\item
\begin{align*}
y & = -\frac{1}{2}(x+2)+3\\
y & = -\frac{1}{2}x -\frac{1}{2}\cdot 2 +3\\
y & = -\frac{1}{2} - 1 + 3\\
y & = -\frac{1}{2 }x + 2
\end{align*}
\end{enumerate}
\end{solution}
\handoutpagebreak
\begin{example}
\label{example:pair_and_share_retirement_point_slope_2}
This example is meant to show that sometimes it makes sense
to think about a problem using the point-slope form of a line.
Suppose that today my son is 52 inches tall and growing at 1.5 inches
per year.
\begin{enumerate}
\handoutitemsep
\item Roughly speaking, how tall will he be tomorrow?
\item How tall will he be in one year?
\item How tall will he be in two years?
\item Write a formula for $y$ (=height) as a function of
$t$ (=the calendar year), using point-slope form.
\handoutfill
\end{enumerate}
\end{example}
\begin{solution}
\begin{enumerate}
\item Basically, tomorrow he'll be about the same height as today:
$$
\text{height tomorrow} \approx 52
$$
\item In one year he will grow roughly another $1.5$ inches
$$
\text{height in one year} \approx 52 + 1.5
$$
\item In two years he should grow another $1.5$ inches twice
$$
\text{height in two years} \approx 52 + 1.5(2)
$$
\item
\begin{align*}
\text{height in a bunch of years} & = 52 + 1.5 \times (\text{\# of years })\\
& = 52 + 1.5 \times (t - \the\year)
\end{align*}
Note that this is the point-slope equation:
\begin{align*}
y & = 52 + 1.5 (t-\the\year)\\
y & = y_0\, + \ m\ (x-\ x_0)
\end{align*}
\end{enumerate}
\end{solution}
\begin{example}
\label{example:pair_and_share_graphing_point_slope_1}
This example is meant to show that it's actually quite easy to graph a
line in point-slope form.
\begin{enumerate}
\item On the graph paper below, graph the point $(5,7)$ with a
circle about like this \tikz\draw[fill=black] circle (2pt);
\item Add to the graph a second large point, \tikz\draw[fill=black]
circle (2pt); that is $2$ places to the right right and $3$ places
up; mark the distances of $2$ and $3$ with dashed lines.
\item Draw a line through the two points you have labeled.
\item Describe what the graph you made has to do with the line
$y=\frac{3}{2}(x-5)+7$.
\end{enumerate}
\begin{center}
\begin{tikzpicture}[xscale=0.5,yscale=0.4]
\foreach \x in {1,2,...,10} \xtickmark{\x};
\foreach \y in {1,2,...,12} \ytickmark{\y};
\draw[very thick,->](0,0)--(10.5,0);
\draw[very thick,->](0,0)--(0,12.5);
\end{tikzpicture}
\end{center}
\end{example}
\begin{solution}\mbox{}
\begin{center}
\begin{tikzpicture}[xscale=0.5,yscale=0.4]
\foreach \x in {1,2,...,10} \xtickmark{\x};
\foreach \y in {1,2,...,12} \ytickmark{\y};
\draw[very thick,->](0,0)--(10.5,0);
\draw[very thick,->](0,0)--(0,12.5);
\draw[fill] (5,7) circle (4pt);
\draw[fill] (7,10) circle (4pt);
\draw[dashed] (5,7) -- ++ (2,0) -- ++ (0,3);
\draw (3,4) -- (9,13);
\end{tikzpicture}
\end{center}
The first lesson is that it was easy to draw this line geometrically:
draw one point, count over and up, draw a second point. The second
lesson is that we can see this information in the equation $y=\frac 32
(x-5)+7$. The ``$5$'' and the ``$7$'' is the point we start with.
And the slope \raisebox{2ex}{``}$\frac 32$\raisebox{2ex}{''} is pretty much where we always see it. So
really, this shouldn't be any harder than using the $y=mx+b$ equation.
\end{solution}
\section{Fractions}
\begin{example}
\begin{enumerate}
\handoutitemsep
\item Add the fractions, and simplify if possible: $\frac{5}{14}+\frac{7}{14}$.
\item Add the fractions, and simplify if possible: $\frac{17}{x} + \frac{3}{x}$.
\item Get a common denominator and combine the fractions: $\frac{3}{10}
+ \frac{8}{15}$.
\item Get a common denominator and combine the fractions: $\frac{3}{7}
+ \frac{2}{11}$.
\item Get a common denominator and combine the fractions: $\frac{3}{7}
+ \frac{x}{11}$.
\item Get a common denominator and combine the fractions: $\frac{3}{x}
+ \frac{x}{11}$.
\item Multiply the fractions, and simplify if possible: $\frac{-5}{3}\cdot \frac{7}{10}$
\item Multiply the fractions, and simplify if possible: $\frac{x}{2}\cdot \frac{x}{7}$.
\item Multiply the fractions, and simplify if possible: $\frac{3x}{2}\cdot \frac{-13}{5x}$.
\item Simplify until you get a single fraction, with no compound fractions: $x\left(\frac{1+\sfrac 1x}{x+\sfrac 1x}\right)$
\handoutfill
\end{enumerate}
\end{example}
\begin{solution}
\begin{enumerate}
\item $\frac{5+7}{14} = \frac{12}{14} = \frac{6}{7}$.
\item $\frac{17+3}{x}= \frac{20}{x}$
\item $\frac{9}{30} + \frac{16}{30} = \frac{25}{30} = \frac{5}{6}$
\item $\frac{33}{77} + \frac{14}{77} = \frac{47}{77}$
\item $\frac{33}{77} + \frac{7x}{77} = \frac{33+7x}{77}$
\item $\frac{33}{11x}+\frac{x^2}{11x} = \frac{33+x^2}{11x}$
\item There are two ways you can do this. Multiply, then cancel:
$$
\frac{-35}{30} = \frac{-35\div 5}{30\div 5} = \frac{-7}{6}
$$
or you can cancel, then multiply second:
$$
\frac{-\cancel{5}^{\textstyle 1}}{3}\cdot
\frac{7}{\cancel{10}_{\textstyle{2}}}
=\frac{-1\cdot 7}{3\cdot 2}=\frac{-7}{6}
$$
\item $\frac{x}{2}\cdot \frac{x}{7} = \frac{x^2}{14}$.
\item As before, you can multiply then cancel:
$$
\frac{3x}{2}\cdot \frac{-13}{5x} = \frac{3x(-13)}{2(5x)} =
-\frac{-39\cancel x}{10\cancel x} = -\frac{-39}{10}
$$
or you can cancel, then multiply
$$
\frac{3\cancel{x}}{2}\cdot \frac{-13}{5\cancel{x}} = \frac{3(-13)}{2(5)} =
-\frac{-39}{10}
$$
\item I'll do this one in a fair amount of detail:
$$
x\left(\frac{1+\sfrac 1x}{x+\sfrac 1x}\right) = \sfrac{x}{1}
\left(\frac{1+\sfrac 1x}{x+\sfrac 1x}\right) = \frac{x\left(1+\sfrac
1x\right)}{x+\sfrac 1x} = \frac{x+\sfrac xx}{x+\sfrac{1}{x}} =
\frac{x+1}{x+\sfrac 1x}
$$
To cancel the last $\sfrac 1x$ we multiply
the top and the bottom of this last fraction by $x$ and simplify:
$$
\sfrac xx \cdot \frac{x+1}{x+\sfrac 1x} =
\frac{x(x+1)}{x\left(x+\sfrac 1x\right)} = \frac{x(x+1)}{x^2+1}
$$
\end{enumerate}
\end{solution}
\section{Exponents}
\begin{example}
Recall:
\begin{align*}
a^{-b} & \text{ means }{\frac{1}{\ a^b\ }} & (a^n)^m & = {a^{nm}} & \frac{a^n}{a^m} & = {a^{n-m}} \\
a^{1/b} & \text{ means }{\sqrt[b]{a}} & a^n a^m & = {a^{n+m}} & (ab)^n & ={a^n b^n} \\
\end{align*}
Using the above properties, simplify the following.
\begin{enumerate}
\handoutitemsep
\item $(-2)^5$
\item $\frac{x^{17}}{x^{22}}$
\item $4^{-3/2}$
\item $\sqrt{36x^4}$
\handoutfill
\end{enumerate}
\end{example}
\begin{solution}
\begin{enumerate}
\item $(-2)^5 = (-2)(-2)(-2)(-2)(-2) = {-32}$
\item $\frac{x^{17}}{x^{22}} = {x^{17-22}=x^{-5}=\frac{1}{x^5}}$
\item $4^{-3/2} = {\frac{1}{4^{3/2}} =
\frac{1}{(\sqrt{4})^3}=\frac{1}{2^3}=\frac{1}{8}}$
\item $\sqrt{36x^4} = \sqrt{36}\sqrt{x^4} = {6x^2}$
\end{enumerate}
\end{solution}
\begin{example}
\begin{enumerate}
\handoutitemsep
\item Simplify the following
$$
\frac {-2x^{-4}y^6}
{3x^3y^{-3}}
$$
so that your final is written using only exponents, no fractions, and
each base, $2$, $3$, $x$ and $y$, appears only once.
\item %Extra Credit/
Challenge Problem:
Simplify the following
$$
\left(\frac
{(-2x^{-4}y^6)^{-8}}
{(3x^3y^{-3})^{-2}}
\right)^{-2}_{}
$$
so that your final answer has no fractions, and each base, $2$, $3$,
$x$ and $y$, appears only once.
\handoutfill
\end{enumerate}
\end{example}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
\frac {-2x^{-4}y^6} {3x^3y^{-3}}
& = -2x^{-4}y^6\cdot 3\inv x^{-3}y^{3} \\
& = -2 \cdot 3\inv x^{-7}y^9
\end{align*}
\item There's more than one order you can do this in, and it really
doesn't matter too much which way you go. But I think it does help
to get some sort of a strategy and try to follow that. For
instance, you could say ``I'll work from the inside out, and
simplify as I go.'' Or you could say, ``I'll work from the outside
in, and simplify at the end.'' But what you probably
\emph{shouldn't} say is ``I'll randomly combine the inside and the
outside, and move everything around until I think of something to do
with it.''
I'll work from the inside out and simplify as I go:
\begin{align*}
\left(\frac {(-2x^{-4}y^6)^{-8}}
{(3x^3y^{-3})^{-2}} \right)^{-2}
& =\left(\frac {(-2)^{-8} x^{32} y^{-48}}
{(3)^{-2} x^{-6} y^{6}} \right)^{-2}\\
& = \left(2^{-8} 3^{-(-2)} x^{32-(-6)} y^{-48-6}\right)^{-2}\\
& =\left(2^{-8} 3^{2} x^{38} y^{-54}\right)^{-2}\\
& = 2^{16} 3^{-4} x^{-76} y^{108}
\end{align*}
\end{enumerate}
\end{solution}
\section{Square roots}
\begin{example}
Recall that $(5\cdot 7)^2 = 5^2\cdot 7^2$. Since this is true, a
similar result holds for square roots: $\sqrt{5\cdot 7} =
\sqrt{5}\,\cdot\,\sqrt{7}$.
\begin{enumerate}
\handoutitemsep
\item Simplify the following: $\sqrt{4\cdot 3}$
\item Simplify the following: $\sqrt{49x}$ (assume that $x>0$)
\item Simplify the following: $\sqrt{7x^2}$ (assume that $x>0$)
\handoutfill
\end{enumerate}
\end{example}
\begin{solution}
\begin{enumerate}
\item $\sqrt{4\cdot 3} = \sqrt{4}\sqrt{3}=2\sqrt{3}$
\item $\sqrt{49x} = \sqrt{49}\sqrt{x} = 7\sqrt{x}$
\item $\sqrt{7x^2} = \sqrt{x^2}\sqrt{7} = x\sqrt{7}$
\end{enumerate}
\end{solution}
\section{Grouping and expanding terms}
\begin{example}
Simplify the following:
$$
(3y^3+9y^2-11y+8)-(-4y^2+10y-6)
$$
\end{example}
\begin{solution}
\begin{align*}
(3y^3+9y^2-11y+8)-(-4y^2+10y-6)
& = 3y^3+9y^2-11y+8\ -\ (-4y^2) -10y -(-6)\\
& 3y^3 + 9y^2 -(-4y^2) - 11y - 10y + 8 - (-6)\\
& 3y^3 + 9y^2 +4y^2 - 21y + 8 +6\\
& 3y^3 + 13y^2 - 21y + 14
\end{align*}
\end{solution}
\begin{example}
Simplify the following:
$$
(3x-1)(x+2)-(2x+5)^2
$$
\end{example}
\begin{solution}
The main step is FOIL\footnote{Basically ``foiling'' means you take
each thing on the left, and distribute it across the pieces on the
right. The letters stand for First Outer Inner Last.}:
$$
\foil abcd
= \textcolor{red}{ac} + \textcolor{red}{ad} +
\textcolor{foilgreen}{bc} + \textcolor{foilgreen}{bd}
$$
We apply FOIL to both $(3x-1)(x+2)$ and to $(2x+5)^2 = (2x+5)(2x+5)$:
$$
\begin{array}{r@{\ }l}
\foil[-,+]{3x}{1}{x}{2}
&
-\foil{2x}{5}{2x}{5}\\
& =
[\textcolor{red}{3x^2}+\textcolor{red}{6x}-\textcolor{foilgreen}{x}-\textcolor{foilgreen}{2}]
- [\textcolor{red}{4x^2}+\textcolor{red}{10x} + \textcolor{foilgreen}{10x} + \textcolor{foilgreen}{25}]\\
& = 3x^2-4x^2 +6x-x-20x -2-25\\
& = -x^2 -15x -27
\end{array}
$$
\end{solution}
\handoutpagebreak
\section{Quadratics}
\begin{example}
A quadratic function has the following form
$$
y = ax^2+bx+c
$$
Match the following quadratics with their graphs: see if you can do
this without using your calculator.
\begin{enumerate}
\item $y=x^2$
\item $y=(x+2)^2$
\item $y=x^2+2$
\item $y=-2x^2-3x+5$
\item $y=3x^2-3x-5$
\end{enumerate}
\bigskip
\begin{beforesolutions}
\begin{multicols}{2}
\parskip = 2\bigskipamount
{\includegraphics[width=1.5in]{graph_of_general_up_parab}}
{\includegraphics[width=1.5in]{graph_of_x_squared_plus_2}}
{\includegraphics[width=1.5in]{graph_of_x_plus_2_squared}}
{\includegraphics[width=1.5in]{graph_of_general_down_parab}}
{\includegraphics[width=1.5in]{graph_of_x_squared}}
\end{multicols}
\end{beforesolutions}
\end{example}
\begin{solution}\mbox{}
\begin{multicols}{2}
\parskip = 2\bigskipamount
\graphlabel{$3x^2-3x-5$}{\includegraphics[width=1.5in]{graph_of_general_up_parab}}
\graphlabel{$x^2+2$}{\includegraphics[width=1.5in]{graph_of_x_squared_plus_2}}
\graphlabel{$(x+2)^2$}{\includegraphics[width=1.5in]{graph_of_x_plus_2_squared}}
\graphlabel{$-2x^2-3x+5$}{\includegraphics[width=1.5in]{graph_of_general_down_parab}}
\graphlabel{$x^2$}{\includegraphics[width=1.5in]{graph_of_x_squared}}
\end{multicols}
\end{solution}
\begin{example}
Factoring a quadratic means to write it as a product. Usually you
shouldn't bother to factor a quadratic unless the $x^2$-coefficient
equals $1$. In that case, you're trying to write it like this:
$$
y=x^2+bx+c = (x+d)(x+e)
$$
There are various tricks in finding $d$ and $e$, but honestly, in this
case, I usually just guess and check as follows: (1) guess two values,
$d$ and $e$, that multiply together to give you $c$, and then (2)
check to see if they add up to $b$. Note: when I write ``$+b$'' and
``$+c$'' and say ``add'' I'm also including negative numbers in there.
\begin{enumerate}
\handoutitemsep
\item Factor and solve $x^2+2x+1=0$.
\item Factor and solve $x^2+3x+2=0$.
\item Factor and solve $x^2-3x+2=0$.
\item Factor and solve $x^2-x-2=0$.
\item Factor and solve $x^2-x-12=0$.
\item Factor and solve $x^2-8x+12=0$.
\handoutfill
\end{enumerate}
\end{example}
\begin{solution}
\begin{multicols}{2}
\begin{enumerate}
\item \begin{align*}
x^2+2x+1 & =0\\
(x+1)(x+1) & = 0\\
x& = -1
\end{align*}
\item
\begin{align*}