-
Notifications
You must be signed in to change notification settings - Fork 5
/
extractFeatures.m
executable file
·95 lines (78 loc) · 3.1 KB
/
extractFeatures.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
clear;
%% Dependencies
addpath('libs/yael_matlab_linux64_v438'); % yael
run libs/vlfeat-0.9.21/toolbox/vl_setup % vl_feat
%% Add path
addpath('utils'); % utility codes
addpath('config'); % configuration codes
%% Configure dataset for experiment
route = 'full'; % route can be "alternate" or "full"
[dataset_dir, work_dir, sequences, sequence_lengths, ...
sequence_numbers] = configRobotCar(route);
%% Load PCA and whitening matrices
fprintf('Load PCA and whitening matrices\n');
tic;
pcafn = [work_dir '/dnscnt_RDSIFT_K128_vlad_pcaproj.mat'];
load(pcafn,'vlad_proj','vlad_lambda');
fea_dim = 4096; % new projected dimension
proj_matrix = single(vlad_proj(:,1:fea_dim)');
whiten_matrix = diag(1./sqrt(vlad_lambda(1:fea_dim)));
clearvars vlad_proj vlad_lambda
fprintf('\t===> Finished in %.2fs\n', toc);
%% Load codebook and index it
fprintf('Load and process codebook\n');
tic;
dictfn = [work_dir '/dnscnt_RDSIFT_K128.mat'];
load(dictfn,'CX');
CX = bsxfun(@rdivide, CX, sqrt(sum((CX.^2),1)) ); % normalize each visual word
codebook_kdtree = vl_kdtreebuild(CX);
k = size(CX, 2);
fprintf('\t===> Finished in %.2fs\n', toc);
%% Do feature extraction
for ii = 1 : sequence_numbers
fprintf('\n==================================================\n');
seq = sequences{ii};
seq_len = sequence_lengths(ii);
info_file = [dataset_dir '/' route '/' seq '.info']; % info file which contains image information
% read info
info = readInfoFile(info_file, seq_len);
% extract feature
fprintf('Extract features of sequence %s\n', seq);
feature_file = [work_dir '/' seq '.mat'];
fprintf('\tFeatures are stored in %s\n', feature_file);
image_dir = [dataset_dir '/' route '/' seq];
feature_vectors = zeros(fea_dim, seq_len, 'single');
tic;
for kk = 1:seq_len
if mod(kk, 100) == 1, fprintf('Process image %d in %.2f\n', kk, toc); end
image_name = info{kk}.image_name;
image_path = [image_dir '/' image_name];
fprintf('\t%s\n', image_path);
% extract local features
img = imread(image_path);
img=rgb2gray(img);
img = vl_imdown(img);
[f, descs] = vl_phow(im2single(img));
% root sift
descs = single(descs);
descs= bsxfun(@rdivide, descs, sum(abs(descs),1) + 1e-9 );
descs= sqrt(descs);
% compute vlad
num_desc = size(descs, 2);
nearest_ids = vl_kdtreequery(codebook_kdtree, CX, descs) ;
assignments = zeros(k, num_desc, 'single');
assignments(sub2ind(size(assignments), ...
double(nearest_ids), 1:length(nearest_ids)))= 1;
v = vl_vlad(descs, CX, assignments, 'NormalizeComponents');
% post-process
v = proj_matrix * v; % reduce dimension
v = whiten_matrix * v; % whitening
v = single(yael_vecs_normalize(v)); % L2-normalize
% store
feature_vectors(:, kk) = v;
end
fprintf(2, 'Save features to %s\n', feature_file);
tic;
save(feature_file, 'feature_vectors', '-v7.3');
fprintf('\t===> Finished in %.2fs\n', toc);
end