diff --git a/Compfiles.lean b/Compfiles.lean index 138095c..28f31f8 100644 --- a/Compfiles.lean +++ b/Compfiles.lean @@ -52,6 +52,7 @@ import Compfiles.Imo1981P3 import Compfiles.Imo1981P6 import Compfiles.Imo1982P1 import Compfiles.Imo1982P4 +import Compfiles.Imo1982Q3 import Compfiles.Imo1983P1 import Compfiles.Imo1983P5 import Compfiles.Imo1983P6 diff --git a/Compfiles/Imo1982Q3.lean b/Compfiles/Imo1982Q3.lean new file mode 100644 index 0000000..c8327cb --- /dev/null +++ b/Compfiles/Imo1982Q3.lean @@ -0,0 +1,324 @@ +/- +Copyright (c) 2024 Alex Brodbelt. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Alex Brodbelt +-/ +import Mathlib.Tactic + +import ProblemExtraction + +problem_file { + tags := [.Algebra] + importedFrom := + "https://github.com/leanprover-community/mathlib4/pull/16190" +} + +/-! +# International Mathematical Olympiad 1982, Problem 3 + +Consider infinite sequences $\{x_n \}$ of positive reals such that $x_0 = 0$ and +$x_0 \geq x_1 \geq x_2 \geq ...$ + +a) Prove that for every such sequence there is an $n \geq 1$ such that: + +$\frac{x_0^2}{x_1} + \ldots + \frac{x_{n-1}^2}{x_n} \geq 3.999$ + +b) Find such a sequence such that for all n: + +$\frac{x_0^2}{x_1} + \ldots + \frac{x_{n-1}^2}{x_n} < 4$ +-/ + +namespace Imo1982Q3 + +snip begin + +/- +The solution is based on the one at the +[Art of Problem Solving](https://artofproblemsolving.com/wiki/index.php/1982_IMO_Problems/Problem_3) +website. +-/ + +lemma sum_Fin_eq_sum_Ico {x : ℕ → ℝ} {N : ℕ} : ∑ n : Fin N, x n = ∑ n ∈ Finset.Ico 0 N, x n := by + rw [Fin.sum_univ_eq_sum_range, Nat.Ico_zero_eq_range] + +/- +Specialization of Cauchy-Schwarz inequality with the sequences x n / √(y n) and √(y n) +-/ +theorem Sedrakyan's_lemma {ι : Type*} {s : Finset ι} {x y : ι → ℝ} + (hN : 0 < Finset.card s) (_xi_pos : ∀ i ∈ s, 0 < x i) (yi_pos : ∀ i ∈ s, 0 < y i) : + (∑ n ∈ s, x n) ^ 2 / (∑ n ∈ s, y n) ≤ ∑ n ∈ s, (x n) ^ 2 / y n := by + have : 0 < ∑ n ∈ s, y n := Finset.sum_pos yi_pos <| Finset.card_pos.mp hN + apply le_of_le_of_eq (b := ((∑ n ∈ s, x n ^ 2 / y n) * ∑ n ∈ s, y n) / ∑ n ∈ s, y n) + · gcongr + convert Finset.sum_mul_sq_le_sq_mul_sq s (fun n ↦ x n / √ (y n)) (fun n ↦ √ (y n)) with n hn n hn n hn + all_goals specialize _xi_pos n hn + all_goals specialize yi_pos n hn + · field_simp + · field_simp + · rw [Real.sq_sqrt] + positivity + · field_simp + +lemma ineq₁ {x : ℕ → ℝ} {N : ℕ} (hN : 1 < N) (hx : ∀ i , x (i + 1) ≤ x i) : + x N ≤ (∑ n : Fin (N - 1), x (n + 1)) / (N - 1) := by + have h : ∀ m n : ℕ, n ≤ m → x m ≤ x n := by + intro m n mlen + induction' m, mlen using Nat.le_induction with k _nlek xk_le_xn + · exact le_refl (x n) + · calc + x (k + 1) ≤ x k := hx k + _ ≤ x n := xk_le_xn + rw [le_div_iff₀ (by aesop)] + calc + x N * (↑N - 1) = ((N - 1) : ℕ) * x N := by + rw [mul_comm, Nat.cast_sub, Nat.cast_one]; linarith + _ = ↑(Finset.range (N - 1)).card * x N := by rw [Finset.card_range] + _ = ∑ _ ∈ Finset.range (N - 1), x N := by + simp only [Finset.univ_eq_attach, Finset.sum_const, Finset.card_attach, Nat.card_Ioc, nsmul_eq_mul] + _ ≤ ∑ n ∈ Finset.range (N - 1), x (n + 1) := by + apply Finset.sum_le_sum + intro i hi + rw [Finset.mem_range, Nat.lt_sub_iff_add_lt (a := i) (b := 1) (c := N)] at hi + apply h + apply le_of_lt hi + _ = ∑ n : Fin (N - 1), x (↑n + 1) := by rw [Finset.sum_range] + +lemma ineq₂ {x : ℕ → ℝ} {N : ℕ} + (hN : 1 < N) (hx : ∀ i , x (i + 1) ≤ x i) (x_pos : ∀ i, x i > (0 : ℝ)) : + (N - 1) / N * (1 / ∑ n : Fin (N - 1), x (n + 1)) ≤ 1 / (∑ n : Fin N, x (n + 1)) := by + have ne_zero : N - 1 ≠ 0 := Nat.sub_ne_zero_iff_lt.mpr hN + have ne_zero' : (N : ℝ) - 1 ≠ 0 := by + rw [ne_eq]; intro h + rw [sub_eq_iff_eq_add, zero_add] at h + rw [@Nat.cast_eq_one] at h + rw [h] at hN; apply lt_irrefl _ hN + have sum_range_pos : 0 < ∑ i ∈ Finset.range (N - 1), x (i + 1) := by + apply Finset.sum_pos + · intro i _hi + apply x_pos _ + simp [ne_zero] + have mul_sum_pos : 0 < ∑ i ∈ Finset.range (N - 1), x (i + 1) * ↑N / (↑N - 1) := by + apply Finset.sum_pos + · intro i _hi + apply div_pos + · apply mul_pos + · apply x_pos + simp only [Nat.cast_pos] + linarith + rw [lt_sub_iff_add_lt, zero_add, Nat.one_lt_cast] + apply hN + rw [Finset.nonempty_range_iff] + exact ne_zero + have sum_fin_pos : 0 < ∑ n : Fin N, x (↑n + 1) := by + apply Finset.sum_pos; intro i _hi + · apply x_pos (i +1) + rw [Finset.univ_nonempty_iff, ← Fin.pos_iff_nonempty] + linarith + convert_to + (N - 1) / N * (1 / ∑ n ∈ Finset.range (N - 1), x (n + 1)) ≤ 1 / (∑ n : Fin N, x (n + 1)) using 3 + · rw [Finset.sum_range] + convert_to 1 / (N * (∑ n ∈ Finset.range (N - 1), x (n + 1)) / (N - 1)) ≤ 1 / (∑ n : Fin N, x (n + 1)) + · field_simp + convert_to 1 / ∑ i ∈ Finset.range (N - 1), x (i + 1) * ↑N / (↑N - 1) ≤ 1 / (∑ n : Fin N, x (n + 1)) + · rw [mul_comm, Finset.sum_mul, Finset.sum_div] + rw [div_le_div_iff₀ (mul_sum_pos) (sum_fin_pos), one_mul, one_mul, ] + calc ∑ n : Fin N, x (↑n + 1) = ∑ n ∈ Finset.range N, x (n + 1) := by rw [Finset.sum_range] + _ = ∑ n ∈ Finset.range (N - 1 + 1), x (n + 1) := by + rw [Nat.sub_one_add_one_eq_of_pos (by linarith [hN])] + _ = ∑ n ∈ Finset.range (N - 1), x (n + 1) + x N := by + rw [Finset.sum_range_succ, Nat.sub_one_add_one_eq_of_pos (by linarith [hN])] + _ ≤ ∑ n ∈ Finset.range (N - 1), x (n + 1) + (∑ n ∈ Finset.range (N - 1), x (n + 1)) / (↑N - 1) := by + apply add_le_add_left; rw [Finset.sum_range]; apply ineq₁ hN hx; + _ = ∑ n ∈ Finset.range (N - 1), x (n + 1) + (∑ n ∈ Finset.range (N - 1), x (n + 1) / (↑N - 1)) := by + rw [Finset.sum_div] + _ = ∑ n ∈ Finset.range (N - 1), (x (n + 1) + x (n + 1) / (↑N - 1)) := by rw [Finset.sum_add_distrib] + _ = ∑ n ∈ Finset.range (N - 1), N * x (n + 1) / (↑N - 1) := by + apply Finset.sum_congr (by rfl) + intro n _hn + nth_rewrite 1 [ + ← one_mul (x (n + 1)), + ← div_self (a := (N - 1 : ℝ)) (ne_zero'), + mul_comm, + mul_div, + div_add_div_same + ] + nth_rewrite 2 [← mul_one (x (n + 1))] + rw [← mul_add, mul_comm] + simp only [sub_add_cancel] + _ = ∑ i ∈ Finset.range (N - 1), x (i + 1) * ↑N / (↑N - 1) := by + apply Finset.sum_congr (by rfl); intro n _hn; rw [mul_comm] + +lemma ineq₃ {x : ℕ → ℝ} {N : ℕ } (hN : 1 < N) (x_pos : ∀ i, x i > (0 : ℝ)) : + 2 * (∑ n : Fin N, x (n + 1)) ≤ 1 + (∑ n : Fin N, x (n + 1))^2 := by + have sum_fin_pos : 0 < ∑ n : Fin N, x (↑n + 1) := by + apply Finset.sum_pos + · intro i _hi + apply x_pos (i +1) + rw [Finset.univ_nonempty_iff, ←Fin.pos_iff_nonempty] + linarith + calc + 2 * (∑ n : Fin N, x (n + 1)) = 2 * (1^(1/2 : ℝ) * ((∑ n : Fin N, x (n + 1))^2)^(1/2 : ℝ)) := by + rw [Real.one_rpow, one_mul, ← Real.sqrt_eq_rpow, Real.sqrt_sq _] + apply le_of_lt sum_fin_pos + _ ≤ 2 * ((1/2 : ℝ) * 1 + (1/2 : ℝ) * (∑ n : Fin N, x (n + 1))^2) := by + rw [mul_le_mul_left (by norm_num)] + apply Real.geom_mean_le_arith_mean2_weighted + (by norm_num) (by norm_num) (by norm_num) (sq_nonneg _) (by norm_num) + _ ≤ 1 + (∑ n : Fin N, x (n + 1))^2 := by field_simp + +lemma Ico_sdiff_zero_eq_Ico {N : ℕ} : Finset.Ico 0 N \ {0} = Finset.Ico 1 N := by + rw [Finset.sdiff_singleton_eq_erase, Finset.Ico_erase_left, Nat.Ico_succ_left] + +lemma eq₀ {x : ℕ → ℝ} {N : ℕ} (hN : 1 < N) (hx₀ : x 0 = (1 : ℝ)) : + (∑ n : Fin N, (x n))^2 + = 1 + 2 * (∑ n : Fin (N - 1), x (n + 1)) + (∑ n : Fin (N - 1), x (n + 1))^2 := by + have zero_lt_N : 0 < N := by linarith + have two_le_N : 2 ≤ N := by linarith + have : ∀ N, 2 ≤ N → ∑ n : Fin (N - 1), x (↑n + 1) = (∑ n ∈ Finset.Ico 1 N, x n) := by + intro N hN + let f : ℕ → ℝ := (fun n => x (n + 1)) + induction' N, hN using Nat.le_induction with d two_le_d hd + case base => simp + case succ => + have one_le_d : 1 ≤ d := by exact Nat.one_le_of_lt two_le_d + rw [ + ← Finset.sum_range (n := d + 1 - 1) (f := f), + Nat.sub_add_comm (one_le_d), + Finset.sum_range_succ, Finset.sum_range, hd, Finset.sum_Ico_succ_top one_le_d] + simp only [add_right_inj, f] + rw [Nat.sub_add_cancel one_le_d] + rw [ + sum_Fin_eq_sum_Ico, Finset.sum_eq_sum_diff_singleton_add (i := 0) (by simp [zero_lt_N]), + Ico_sdiff_zero_eq_Ico, pow_two, hx₀ + ] + ring_nf + rw [this _ two_le_N]; ring + +snip end + +problem iom1982_p3a {x : ℕ → ℝ} (x_pos : ∀ i, x i > (0 : ℝ)) + (hx₀ : x 0 = (1 : ℝ)) + (hx : ∀ i , x (i + 1) ≤ x i) : + ∃ N : ℕ, 3.999 ≤ ∑ n : Fin N, (x n)^2 / x (n + 1) := by + have div_prev_pos : ∀ N > 1, 0 < (↑N - 1) / (N : ℝ) := by + intro N hN + exact div_pos (by linarith) (by linarith) + have sum_xi_pos : ∀ N > 0, 0 < (∑ n : Fin N, x n) := by + intro N hN + apply Finset.sum_pos + · intro i _hi + apply x_pos i + rw [← Finset.card_pos, Finset.card_fin] + apply hN + have sum_xi_pos' : ∀ N > 1, 0 < (∑ n : Fin (N - 1), x (n + 1)) := by + intro N hN + apply Finset.sum_pos + · intro i _hi + apply x_pos _ + rw [← Finset.card_pos, Finset.card_fin, Nat.lt_sub_iff_add_lt, zero_add] + apply hN + have sedrakayan's_lemma : + ∀ N > 0, + ((∑ n : Fin N, (x n))^2 / (∑ n : Fin N, x (n + 1))) ≤ (∑ n : Fin N, (x n)^2 / x (n + 1)) := + fun N hN => Sedrakyan's_lemma (by simpa) (fun i _ => x_pos i) (fun i _ => x_pos (i + 1)) + have : + ∃ (N : ℕ), 0 < N ∧ 1 < N ∧ 2 < N ∧ (3.999 : ℝ) ≤ 4 * ((N - 1) / N) := by use 4000; norm_num + obtain ⟨N, zero_lt_N, one_lt_N, two_lt_N, ineq₀⟩ := this + use N + calc (3.999 : ℝ) ≤ 4 * ((N - 1) / N) := ineq₀ + _ = (2 + 2) * ((N - 1) / N) := by norm_num + _ = ((2 * (∑ n : Fin (N - 1), x (n + 1)) + + 2 * (∑ n : Fin (N - 1), x (n + 1))) / (∑ n : Fin (N - 1), x (n + 1))) * ((N - 1) / (N)) := by + rw [← div_add_div_same, ← mul_div, div_self, mul_one] + symm + apply (lt_iff_le_and_ne.mp (sum_xi_pos' _ one_lt_N)).right + _ ≤ (1 + (∑ n : Fin (N - 1), x (n + 1))^2 + + 2 * (∑ n : Fin (N - 1), x (n + 1))) / (∑ n : Fin (N - 1), x (n + 1)) * ((N - 1) / (N)) := by + rw [mul_le_mul_right (by apply div_prev_pos N; simp [one_lt_N])] + apply div_le_div₀ + · apply add_nonneg + · apply add_nonneg (by norm_num) (sq_nonneg _) + apply mul_nonneg (by norm_num) + apply (lt_iff_le_and_ne.mp (sum_xi_pos' _ one_lt_N)).left + · apply add_le_add_right + apply ineq₃ _ x_pos + rw [Nat.lt_sub_iff_add_lt, one_add_one_eq_two] + apply two_lt_N + · apply sum_xi_pos' _ one_lt_N + apply le_refl + _ = ((∑ n : Fin N, (x n))^2 / (∑ n : Fin (N - 1), x (n + 1))) * ((N - 1) / (N)) := by + rw [ + eq₀ one_lt_N hx₀, + add_assoc, + add_comm ((∑ n : Fin (N - 1), x (↑n + 1)) ^ 2), + ← add_assoc + ] + _ = ((∑ n : Fin N, (x n))^2) * ((N - 1) / (N)) * (1 / (∑ n : Fin (N - 1), x (n + 1))) := by + rw [← mul_one (((∑ n : Fin N, x ↑n) ^ 2)), mul_div] + ring + _ ≤ ((∑ n : Fin N, (x n))^2 / (∑ n : Fin N, x (n + 1))) := by + nth_rewrite 2 [← mul_one (((∑ n : Fin N, x ↑n) ^ 2))] + rw [← mul_div _ 1, mul_assoc, mul_le_mul_left] + apply ineq₂ one_lt_N hx x_pos + apply sq_pos_of_pos (sum_xi_pos _ zero_lt_N) + _ ≤ ∑ n : Fin N, (x ↑n) ^ 2 / x (↑n + 1) := by + apply sedrakayan's_lemma + apply zero_lt_N + +noncomputable determine sol : ℕ → ℝ := fun n => (1/2)^n + +problem imo1982_p3b : + (∀ i, sol i > 0) ∧ (∀ i, sol (i + 1) ≤ sol i) ∧ (sol 0 = 1) + ∧ ∀ N, ∑ n ∈ Finset.range (N + 1), (sol n ^2 / (sol (n + 1))) < 4 := by + constructor + · intro i + apply pow_pos (by norm_num) i + constructor + · intro i + apply pow_le_pow_of_le_one (by norm_num) + · rw [one_div_le (by norm_num) (by norm_num), div_one]; norm_num + · apply Nat.le_succ + constructor + · rfl + intro N + dsimp [sol] + rw [ + Finset.sum_eq_sum_diff_singleton_add + (s := Finset.range (N + 1)) (i := 0) (Finset.mem_range.mpr (by linarith)), + pow_zero, zero_add, one_pow, pow_one, one_div_one_div, add_comm + ] + convert_to (2 + ∑ n ∈ Finset.range N, (1/2) ^ n : ℝ) < 4 using 2 + induction' N with k hk + case zero => + simp only [ + zero_add, Finset.range_one, sdiff_self, Finset.bot_eq_empty, one_div, inv_pow, div_inv_eq_mul, + Finset.sum_empty, Finset.range_zero + ] + case succ => + rw [ + Finset.sum_range_succ, ← hk, Finset.range_add_one + ] + simp only [ + one_div, inv_pow, div_inv_eq_mul, Finset.singleton_subset_iff, Finset.mem_insert, + self_eq_add_left, AddLeftCancelMonoid.add_eq_zero, one_ne_zero, and_false, + Finset.mem_range, lt_add_iff_pos_left, add_pos_iff, zero_lt_one, or_true, + Finset.sum_sdiff_eq_sub, lt_self_iff_false, not_false_eq_true, Finset.sum_insert, + Finset.sum_singleton, pow_zero, one_pow, inv_one, zero_add, pow_one, one_mul + ] + rw [ + ← pow_mul, mul_comm, ← inv_pow + ] + nth_rewrite 1 [← inv_inv 2] + rw [ + mul_comm, inv_pow 2⁻¹, ← pow_sub₀ (a := 2⁻¹) (ha := by norm_num) (h := by linarith), add_mul, + one_mul, add_assoc, one_add_one_eq_two, mul_comm k 2, two_mul, add_assoc, + Nat.add_sub_assoc (by linarith), Nat.sub_self, add_zero, inv_pow, add_sub_assoc, add_comm + ] + rw [ + geom_sum_eq (by norm_num), half_sub, div_neg, div_eq_inv_mul, one_div, inv_inv, + mul_comm, ← neg_mul, neg_sub + ] + have h₁: (0 < (2 : ℝ)⁻¹ ^ N) := by positivity + linarith [h₁] + +end Imo1982Q3