From 5824a6cdbf241580551b405d5ec467ee1d61b490 Mon Sep 17 00:00:00 2001 From: David Renshaw Date: Wed, 4 Dec 2024 08:57:19 -0500 Subject: [PATCH] [Imo2023P4] more progress --- Compfiles/Imo2023P4.lean | 44 ++++++++++++++++++++++++++++++++-------- 1 file changed, 36 insertions(+), 8 deletions(-) diff --git a/Compfiles/Imo2023P4.lean b/Compfiles/Imo2023P4.lean index 4fa559f..82b8d06 100644 --- a/Compfiles/Imo2023P4.lean +++ b/Compfiles/Imo2023P4.lean @@ -245,10 +245,18 @@ theorem imo2023_p4_generalized have hx3 : 0 ≤ ∑ x_1 ∈ Finset.filter (fun x ↦ x ≤ ⟨n, by simp[n]⟩) (Finset.Icc 1 (2 * (m + 1) + 1)).attach, x x_1 := by - sorry + refine Finset.sum_nonneg ?_ + rintro y hy + simp only [Finset.mem_filter, Finset.mem_attach, true_and] at hy + exact le_of_lt (hxp y) have hy1 : 0 ≤ (x ⟨n + 2, hn2⟩)⁻¹ := inv_nonneg_of_nonneg hx2 have hy2 : 0 ≤ (x ⟨n + 1, hn1⟩)⁻¹ := inv_nonneg_of_nonneg hx1 - have hy3 : 0 ≤ ∑ x_1 ∈ Finset.filter (fun x ↦ x ≤ ⟨n, by simp[n]⟩) (Finset.Icc 1 (2 * (m + 1) + 1)).attach, (x x_1)⁻¹ := by sorry + have hy3 : 0 ≤ ∑ x_1 ∈ Finset.filter (fun x ↦ x ≤ ⟨n, by simp[n]⟩) (Finset.Icc 1 (2 * (m + 1) + 1)).attach, (x x_1)⁻¹ := by + refine Finset.sum_nonneg ?_ + rintro y hy + simp only [Finset.mem_filter, Finset.mem_attach, true_and] at hy + specialize hxp y + positivity have h9 := cauchy_schwarz hx1 hx2 hx3 hy1 hy2 hy3 clear hx1 hx2 hx3 hy1 hy2 hy3 @@ -261,17 +269,29 @@ theorem imo2023_p4_generalized sorry rw [h10] at h9; clear h10 have hxp' : ∀ (i : { x // x ∈ Finset.Icc 1 (2 * m + 1) }), 0 < x' i := by - sorry + rintro ⟨y, hy⟩ + simp only [x'] + have hy' : y ∈ Finset.Icc 1 (2 * (m + 1) + 1) := by + simp only [Finset.mem_Icc] at hy ⊢ + omega + exact hxp ⟨y, hy'⟩ have hxi' : Function.Injective x' := by intro a b hab - sorry + simp only [x'] at hab + specialize hxi hab + simp only [Subtype.mk.injEq] at hxi + exact Subtype.eq hxi have hxa' : ∀ (i : { x // x ∈ Finset.Icc 1 (2 * m + 1) }), ∃ k : ℤ, aa m x' i = ↑k := by rintro ⟨y, hy⟩ - specialize hxa ⟨y, by sorry⟩ + have hy' : y ∈ Finset.Icc 1 (2 * (m + 1) + 1) := by + simp only [Finset.mem_Icc] at hy ⊢ + omega + specialize hxa ⟨y, hy'⟩ obtain ⟨k, hk⟩ := hxa use k rw [←hk] + simp only [x'] sorry specialize ih x' hxp' hxi' hxa' have hup : 0 < u := by @@ -282,13 +302,21 @@ theorem imo2023_p4_generalized have h11 : √(x ⟨n + 1, hn1⟩ * (x ⟨n + 2, hn2⟩)⁻¹) + √(x ⟨n + 2, hn2⟩ * (x ⟨n + 1, hn1⟩)⁻¹) = u + 1 / u := by congr 1 + suffices H: √(x ⟨n + 2, hn2⟩ * (x ⟨n + 1, hn1⟩)⁻¹) * u = 1 from + eq_one_div_of_mul_eq_one_left H unfold u - sorry + have hp1 : 0 < x ⟨n + 1, hn1⟩ := hxp ⟨n + 1, hn1⟩ + have hp2 : 0 < x ⟨n + 2, hn2⟩ := hxp ⟨n + 2, hn2⟩ + rw [←Real.sqrt_mul (by positivity)] + field_simp rw [h11] at h9; clear h11 replace h9 : aa m x' ⟨n, by simp[n]⟩ + 2 < aa (m + 1) x ⟨n + 2, hn2⟩ := by - have h9' : u + 1/u + aa m x' ⟨n, by simp[n]⟩ < + have h9' : u + 1/u + aa m x' ⟨n, by simp[n]⟩ ≤ aa (m + 1) x ⟨n + 2, hn2⟩ := by - sorry + have h12 : 0 ≤ aa (m + 1) x ⟨n + 2, hn2⟩ := by + unfold aa + exact Real.sqrt_nonneg _ + nlinarith only [h9, h12] linarith simp_rw [show 2 * m + 1 = n from rfl] at ih replace h9 : 3 * ↑m + 3 < aa (m + 1) x ⟨n+ 2, hn2⟩ := by linarith