-
Notifications
You must be signed in to change notification settings - Fork 1
/
knapsack.py
66 lines (55 loc) · 1.95 KB
/
knapsack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2022 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dimod import ConstrainedQuadraticModel, Binary, quicksum
from dwave.system import LeapHybridCQMSampler
values = [34, 25, 78, 21, 64]
weights = [3, 5, 9, 4, 2]
W = 10
n = len(values)
# Create the binary variables
x = [Binary(i) for i in range(n)]
# Construct the CQM
cqm = ConstrainedQuadraticModel()
# Add the objective
cqm.set_objective(quicksum(-values[i]*x[i] for i in range(n)))
# Add the two constraints
cqm.add_constraint(quicksum(weights[i]*x[i] for i in range(n)) <= W, label='max weight')
cqm.add_constraint(quicksum(x[i] for i in range(n)) <= 2, label='max items')
# Submit to the CQM sampler
sampler = LeapHybridCQMSampler()
sampleset = sampler.sample_cqm(cqm)
print("\nFull sample set:")
print(sampleset)
feasible_sampleset = sampleset.filter(lambda row: row.is_feasible)
print("\nFeasible sample set:")
print(feasible_sampleset)
best_sample = feasible_sampleset.first.sample
value_string = "Values:\t\t"
value_sum = 0
weight_string = "Weights:\t"
weight_sum = 0
for i in range(n):
if best_sample[i] < 1:
value_string += '\tX'
weight_string += '\tX'
else:
value_string += '\t'+str(values[i])
value_sum += values[i]
weight_string += '\t'+str(weights[i])
weight_sum += weights[i]
value_string += '\tSum: '+str(value_sum)
weight_string += '\tSum: '+str(weight_sum)
print("\nBest solution found:")
print(value_string)
print(weight_string)