-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmulti_period.py
175 lines (145 loc) · 7.27 KB
/
multi_period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2021 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import numpy as np
import matplotlib
try:
import matplotlib.pyplot as plt
except ImportError:
matplotlib.use("agg")
import matplotlib.pyplot as plt
from single_period import SinglePeriod
class MultiPeriod(SinglePeriod):
"""Solve the multi-period (dynamic) portfolio optimization problem.
"""
def __init__(self, stocks=('AAPL', 'MSFT', 'AAL', 'WMT'), budget=1000,
bin_size=None, gamma=None, file_path=None,
dates=None, model_type='CQM', alpha=0.005, baseline='^GSPC',
sampler_args=None, t_cost=0.01, verbose=True):
"""Class constructor.
Args:
stocks (list of str): List of stocks.
budget (int): Portfolio budget.
bin_size (int): Maximum number of intervals for each stock.
gamma (float or int or list or tuple): Budget constraint penalty coefficient(s).
If gamma is a tuple/list and model is DQM, grid search will be done;
otherwise, no grid search.
file_path (str): Full path of CSV file containing stock data.
dates (list of str): Pair of strings for start date and end date.
model_type (str): CQM or DQM.
alpha (float or int or list or tuple): Risk aversion coefficient.
If alpha is a tuple/list and model is DQM, grid search will be done;
otherwise, no grid search.
baseline (str): Stock baseline for rebalancing model.
sampler_args (dict): Sampler arguments.
t_cost (float): transaction cost; percentage of transaction dollar value.
verbose (bool): Flag to enable additional output.
"""
super().__init__(stocks=stocks, budget=budget, t_cost=t_cost,
bin_size=bin_size, gamma=gamma, file_path=file_path,
dates=dates, model_type=model_type, alpha=alpha,
baseline=baseline, sampler_args=sampler_args, verbose=verbose)
def run(self, max_risk=0, min_return=0, num=0, init_holdings=None):
"""Solve the rebalancing portfolio optimization problem.
Args:
max_risk (int): Maximum risk for the CQM risk bounding formulation.
min_return (int): Minimum return for the CQM return bounding formulation.
"""
if not self.dates:
self.dates = ['2010-01-01', '2012-12-31']
self.load_data()
num_months = len(self.df_all)
first_purchase = True
result = {}
baseline_result = {}
self.baseline_values = [0]
self.update_values = [0]
months = []
# Define dataframe to save output data
headers = ['Date', 'Value'] + self.stocks + ['Variance', 'Returns']
self.opt_results_df = pd.DataFrame(columns=headers)
row = []
self.price_df = pd.DataFrame(columns=self.stocks)
# Initialize the plot
plt.ylim(ymax = 1.5*self.budget, ymin = -1.5*self.budget)
plt.xticks(list(range(0, num_months, 2)),
self.df_baseline.index.strftime('%b')[::2], rotation='vertical')
plt.locator_params(axis='x', nbins=num_months/2)
plt.plot(list(range(0, num_months)), [0]*(num_months),
color='red', label="Break-even", linewidth=0.5)
for i in range(3, num_months):
# Look at just the data up to the current month
df = self.df_all.iloc[0:i+1,:].copy()
baseline_df_current = self.df_baseline.iloc[0:i+1,:]
print("\nDate:", df.last_valid_index())
months.append(df.last_valid_index().date())
if first_purchase:
budget = self.budget
initial_budget = self.budget
baseline_shares = (budget / baseline_df_current.iloc[-1])
baseline_result = {self.baseline[0]: baseline_shares}
else:
# Compute profit of current portfolio
budget = sum([df.iloc[-1][s]*result['stocks'][s] for s in self.stocks])
self.update_values.append(budget - initial_budget)
# Compute profit of fund portfolio
fund_value = sum([baseline_df_current.iloc[-1][s]*baseline_result[s]
for s in self.baseline])
self.baseline_values.append(fund_value - initial_budget)
self.budget = budget
self.load_data(df=df)
self.price_df.loc[i-2] = list(self.price.values)
# Output for user on command-line and plot
update_values = np.array(self.update_values, dtype=object)
baseline_values = np.array(self.baseline_values, dtype=object)
plt.plot(range(3, i+1), update_values,
color='blue', label="Optimized portfolio")
plt.plot(range(3, i+1), baseline_values,
color='gray', label="Fund portfolio", linewidth=0.5)
if first_purchase:
plt.legend(loc="lower left")
plt.title("Start: {start}, End: {end}".format\
(start=self.df_all.first_valid_index().date(),
end=self.df_all.last_valid_index().date()))
plt.savefig("portfolio.png")
plt.pause(0.05)
# Making solve run
if self.model_type == 'DQM':
print(f"\nMulti-Period DQM Run...")
self.build_dqm()
self.solution['DQM'] = self.solve_dqm()
result = self.solution['DQM']
else:
print(f"\nMulti-Period CQM Run...")
# Set budget to 0 to enforce that portfolio is self-financing
if self.t_cost and not first_purchase:
self.budget = 0
self.solution['CQM'] = self.solve_cqm(max_risk=max_risk,
min_return=min_return,
init_holdings=init_holdings)
result = self.solution['CQM']
init_holdings = result['stocks']
# Print results to command-line
value = sum([self.price[s]*result['stocks'][s] for s in self.stocks])
returns = result['return']
variance = result['risk']
row = [months[-1].strftime('%Y-%m-%d'), value] + \
[result['stocks'][s] for s in self.stocks] + \
[variance, returns]
self.opt_results_df.loc[i-2] = row
first_purchase = False
print(self.opt_results_df)
print(f'\nRun completed.\n')
plt.savefig("portfolio.png")
plt.show(block=False)