-
Notifications
You must be signed in to change notification settings - Fork 2
/
my_loader.py
273 lines (193 loc) · 8.24 KB
/
my_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
import torch.utils.data as data
from PIL import Image
import os
import os.path
import pickle
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx):
images = []
dir = os.path.expanduser(dir)
for target in sorted(os.listdir(dir)):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
return images
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class ImageFolder(data.Dataset):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader):
classes, class_to_idx = find_classes(root)
imgs = make_dataset(root, class_to_idx)
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path, target = self.imgs[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, path
def __len__(self):
return len(self.imgs)
class mix_img_query_loader(data.Dataset):
def __init__(self, transform=None, target_transform=None, loader=default_loader):
images = []
targets = []
datainfo = pickle.load(open('./images/cifar10_mix_images_499000.pkl', 'rb')) ### Mix=1000 and Comb=1000*999/2=499500; 500 is truncated for rotation processing
# datainfo = pickle.load(open('./images/left/cifar10_left_unlabeled_489000.pkl', 'rb'))
self.image_path_1 = datainfo['x_1_unlabeled_path']
self.image_path_2 = datainfo['x_2_unlabeled_path']
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
### Path in Pickle
img_path_1 = self.image_path_1[index]
img_1 = Image.open(img_path_1).convert('RGB')
img_path_2 = self.image_path_2[index]
img_2 = Image.open(img_path_2).convert('RGB')
if self.transform is not None:
img_1 = self.transform(img_1)
img_2 = self.transform(img_2)
return img_1, img_2, img_path_1, img_path_2
def __len__(self):
return len(self.image_path_1)
class real_img_query_loader(data.Dataset):
def __init__(self, transform=None, target_transform=None, loader=default_loader):
images = []
targets = []
datainfo = pickle.load(open('./images/cifar10_real_images_1000.pkl', 'rb'))
# datainfo = pickle.load(open('./images/cifar10_real_images_2000.pkl', 'rb'))
self.image = datainfo['x_oris']
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
### Array In Pickle
sample = self.image[index].transpose(1,2,0)
img = np.asarray(sample*256,dtype=np.uint8)
img = Image.fromarray(img,'RGB')
if self.transform is not None:
img = self.transform(img)
return img
def __len__(self):
return len(self.image)
class active_query_loader(data.Dataset):
def __init__(self, transform=None, target_transform=None, loader=default_loader):
images = []
targets = []
datainfo = pickle.load(open('./images/query/cifar10_query_new_label_10000.pkl', 'rb'))
# datainfo = pickle.load(open('./images/query/cifar10_query_new_label_20000.pkl', 'rb'))
# datainfo = pickle.load(open('./images/query/cifar10_query_new_label_40000.pkl', 'rb'))
# datainfo = pickle.load(open('./images/query/cifar10_query_new_label_80000.pkl', 'rb'))
# self.image_path_1 = datainfo['x_1_labeled_path']
# self.image_path_2 = datainfo['x_2_labeled_path']
# self.w_1 = datainfo['mix_weights']
self.mix_images = datainfo['mix_array']
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
### Array In Pickle
sample = self.mix_images[index].transpose(1,2,0)
img_mix = np.asarray(sample*256,dtype=np.uint8)
img_mix = Image.fromarray(img_mix,'RGB')
if self.transform is not None:
img_mix = self.transform(img_mix)
return img_mix
def __len__(self):
return len(self.mix_images)
# return len(self.w_1)
class active_learning_loader(data.Dataset):
def __init__(self, transform=None, target_transform=None, loader=default_loader):
images = []
targets = []
datainfo = pickle.load(open('./images/query/cifar10_query_label_1000.pkl', 'rb')) ### Stage 0
# datainfo = pickle.load(open('./images/query/cifar10_query_label_11000.pkl', 'rb')) ### Stage 1
# datainfo = pickle.load(open('./images/query/cifar10_query_label_21000.pkl', 'rb')) ### Stage 2
self.mix_images = datainfo['x_labeled_oris']
self.logits = datainfo['y_labeled_logits']
self.labels = datainfo['y_labeled_label']
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
### Array In Pickle#
sample = self.mix_images[index].transpose(1,2,0)
img_mix = np.asarray(sample*256,dtype=np.uint8)
img_mix = Image.fromarray(img_mix,'RGB')
if self.transform is not None:
img_mix = self.transform(img_mix)
logit = self.logits[index]
label = self.labels[index]
return img_mix, logit, label
def __len__(self):
return len(self.mix_images)