-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
225 lines (182 loc) · 9.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from apex import amp
import logging, imp
import random
import os
import sys
import warnings
import argparse
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import gtg
import net
import data_utility
import utils
from RAdam import RAdam
import argparse
import random
def rnd(lower, higher):
exp = random.randint(-higher, -lower)
base = 0.9 * random.random() + 0.1
return base * 10 ** exp
warnings.filterwarnings("ignore")
class Hyperparameters():
def __init__(self, dataset_name='cub'):
self.dataset_name = dataset_name
if dataset_name == 'cub':
self.dataset_path = '../../datasets/CUB_200_2011'
elif dataset_name == 'cars':
self.dataset_path = '../../datasets/CARS'
else:
self.dataset_path = '../../datasets/Stanford'
self.num_classes = {'cub': 100, 'cars': 98, 'Stanford': 11318}
self.num_classes_iteration = {'cub': 6, 'cars': 5, 'Stanford': 10}
self.num_elemens_class = {'cub': 9, 'cars': 7, 'Stanford': 6}
self.get_num_labeled_class = {'cub': 2, 'cars': 3, 'Stanford': 2}
# self.learning_rate = 0.0002
self.learning_rate = {'cub': 0.0001563663718906821, 'cars': 0.0002, 'Stanford': 0.0006077651100709081}
self.weight_decay = {'cub': 6.059722614369727e-06, 'cars': 4.863656728256105e-07, 'Stanford': 5.2724883734490575e-12}
self.softmax_temperature = {'cub': 24, 'cars': 79, 'Stanford': 54}
def get_path(self):
return self.dataset_path
def get_number_classes(self):
return self.num_classes[self.dataset_name]
def get_number_classes_iteration(self):
return self.num_classes_iteration[self.dataset_name]
def get_number_elements_class(self):
return self.num_elemens_class[self.dataset_name]
def get_number_labeled_elements_class(self):
return self.get_num_labeled_class[self.dataset_name]
def get_learning_rate(self):
return self.learning_rate[self.dataset_name]
def get_weight_decay(self):
return self.weight_decay[self.dataset_name]
def get_epochs(self):
return 70
def get_num_gtg_iterations(self):
return 1
def get_softmax_temperature(self):
return self.softmax_temperature[self.dataset_name]
parser = argparse.ArgumentParser(description='Training inception V2' +
' (BNInception) on CUB-200-2011 (cub), CARS 196 (cars) and Stanford Online Products (Stanford) with The Group Loss as described in ' +
'`The Group Loss for Deep Metric Learning.`')
dataset_name = 'cars' # cub, cars or Stanford
parser.add_argument('--dataset_name', default=dataset_name, type=str, help='The name of the dataset')
hyperparams = Hyperparameters(dataset_name)
parser.add_argument('--cub-root', default=hyperparams.get_path(), help='Path to dataset folder')
parser.add_argument('--cub-is-extracted', action='store_true',
default=True, help='If `images.tgz` was already extracted, do not extract it again.' +
' Otherwise use extracted data.')
parser.add_argument('--nb_classes', default=hyperparams.get_number_classes(), type=int,
help='Number of first [0, N] classes used for training and ' +
'next [N, N * 2] classes used for evaluating with max(N) = 100.')
parser.add_argument('--num_classes_iter', default=hyperparams.get_number_classes_iteration(), type=int,
help='Number of classes in the minibatch')
parser.add_argument('--num_elements_class', default=hyperparams.get_number_elements_class(), type=int,
help='Number of samples per each class')
parser.add_argument('--num_labeled_points_class', default=hyperparams.get_number_labeled_elements_class(), type=int,
help='Number of labeled samples per each class')
parser.add_argument('--lr-net', default=hyperparams.get_learning_rate(), type=float, help='The learning rate')
parser.add_argument('--weight-decay', default=hyperparams.get_weight_decay(), type=float, help='The l2 regularization strength')
parser.add_argument('--nb_epochs', default=hyperparams.get_epochs(), type=int, help='Number of training epochs.')
parser.add_argument('--nb_workers', default=4, type=int, help='Number of workers for dataloader.')
parser.add_argument('--net_type', default='bn_inception', type=str, choices=['bn_inception', 'densenet121', 'densenet161', 'densenet169', 'densenet201',
'resnet18', 'resnet34', 'resenet50', 'resnet101', 'resnet152'],
help='The type of net we want to use')
parser.add_argument('--num_iter_gtg', default=hyperparams.get_num_gtg_iterations(), type=int, help='Number of iterations we want to do for GTG')
parser.add_argument('--embed', default=0, type=int, help='boolean controling if we want to do embedding or not')
parser.add_argument('--scaling_loss', default=1.0, type=float, dest='scaling_loss', help='Scaling parameter for the loss')
parser.add_argument('--temperature', default=hyperparams.get_softmax_temperature(), help='Temperature parameter for the softmax')
parser.add_argument('--decrease_learning_rate', default=10., type=float,
help='Number to divide the learnign rate with')
parser.add_argument('--id', default=1, type=int,
help='id, in case you run multiple independent nets, for example if you want an ensemble of nets')
parser.add_argument('--is_apex', default=0, type=int,
help='if 1 use apex to do mixed precision training')
args = parser.parse_args()
file_name = '256_' + args.dataset_name + str(args.id) + '_' + args.net_type + '_' + str(args.lr_net) + '_' + str(args.weight_decay) + '_' + str(
args.num_classes_iter) + '_' + str(args.num_elements_class) + '_' + str(args.num_labeled_points_class) + '_' + str(args.scaling_loss)
batch_size = args.num_classes_iter * args.num_elements_class
device = 'cuda:0'
# create folders where we save the trained nets and we put the results
save_folder_nets = 'save_trained_nets'
save_folder_results = 'save_results'
if not os.path.exists(save_folder_nets):
os.makedirs(save_folder_nets)
if not os.path.exists(save_folder_results):
os.makedirs(save_folder_results)
# load the pre-trained
model = net.load_net(dataset=args.dataset_name, net_type=args.net_type, nb_classes=args.nb_classes)
# define the loss and optimizer and put them to cuda
model = model.to(device)
gtg = gtg.GTG(args.nb_classes, max_iter=args.num_iter_gtg, device=device).to(device)
opt = RAdam([{'params': list(set(model.parameters())), 'lr': args.lr_net}], weight_decay=args.weight_decay)
criterion = nn.NLLLoss().to(device)
criterion2 = nn.CrossEntropyLoss().to(device)
# do training in mixed precision
if args.is_apex:
model, opt = amp.initialize(model, opt, opt_level="O1")
# create loaders
dl_tr, dl_ev, _, _ = data_utility.create_loaders(args.cub_root, args.nb_classes, args.cub_is_extracted,
args.nb_workers,
args.num_classes_iter, args.num_elements_class,
batch_size)
# train and evaluate the net
best_accuracy = 0
scores = []
for e in range(1, args.nb_epochs + 1):
if e == 31:
model.load_state_dict(torch.load(os.path.join(save_folder_nets, file_name + '.pth')))
for g in opt.param_groups:
g['lr'] = args.lr_net / 10.
if e == 51:
model.load_state_dict(torch.load(os.path.join(save_folder_nets, file_name + '.pth')))
for g in opt.param_groups:
g['lr'] = args.lr_net / 10.
i = 0
for x, Y in dl_tr:
Y = Y.to(device)
opt.zero_grad()
probs, fc7 = model(x.to(device))
labs, L, U = data_utility.get_labeled_and_unlabeled_points(labels=Y,
num_points_per_class=args.num_labeled_points_class,
num_classes=args.nb_classes)
# compute normalized softmax
probs_for_gtg = F.softmax(probs / args.temperature)
# do GTG (iterative process)
probs_for_gtg, W = gtg(fc7, fc7.shape[0], labs, L, U, probs_for_gtg)
probs_for_gtg = torch.log(probs_for_gtg + 1e-12)
# compute the losses
loss1 = criterion(probs_for_gtg, Y)
loss2 = criterion2(probs, Y)
loss = args.scaling_loss * loss1 + loss2
i += 1
# check possible net divergence
if torch.isnan(loss):
print("We have NaN numbers, closing")
print("\n\n\n")
sys.exit(0)
# backprop
if args.is_apex:
with amp.scale_loss(loss, opt) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
opt.step()
# compute recall and NMI at the end of each epoch (for Stanford NMI takes forever so skip it)
with torch.no_grad():
logging.info("**Evaluating...**")
nmi, recall = utils.evaluate(model, dl_ev, args.nb_classes, args.net_type, dataroot=args.dataset_name)
print(recall)
scores.append((nmi, recall))
model.current_epoch = e
if recall[0] > best_accuracy:
best_accuracy = recall[0]
torch.save(model.state_dict(), os.path.join(save_folder_nets, file_name + '.pth'))
with open(os.path.join(save_folder_results, file_name + '.txt'), 'a+') as fp:
fp.write(file_name + "\n")
fp.write(str(args))
fp.write('\n')
fp.write('\n'.join('%s %s' % x for x in scores))
fp.write("\n\n\n")