-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdynamics.py
41 lines (31 loc) · 987 Bytes
/
dynamics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
__all__ = ['dynamics']
def dynamics(W, X, tol=1e-6, max_iter=5, mode='replicator', **kwargs):
"""
Selector for dynamics
Input:
W: the pairwise nxn similarity matrix (with zero diagonal)
X: an (n,m)-array whose rows reside in the n-dimensional simplex
tol: error tolerance
max_iter: maximum number of iterations
mode: 'replicator' to run the replicator dynamics
"""
if mode == 'replicator':
X = _replicator(W, X, tol, max_iter)
else:
raise ValueError('mode \'' + mode + '\' is not defined.')
return X
def _replicator(W, X, tol, max_iter):
"""
Replicator Dynamics
Output:
X: the population(s) at convergence
i: the number of iterations needed to converge
prec: the precision reached by the dynamical system
"""
i = 0
while i < max_iter:
X = X * torch.matmul(W, X)
X /= X.sum(dim=X.dim() - 1).unsqueeze(X.dim() - 1)
i += 1
return X