-
Notifications
You must be signed in to change notification settings - Fork 0
/
light_person_yolo_webcam_v2.py
262 lines (214 loc) · 8.09 KB
/
light_person_yolo_webcam_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python3
# USAGE
# python light_person_yolo_webcam_v2.py --yolo yolo-coco
# python light_person_yolo_webcam_v2.py --use-gpu 1 --yolo yolo-coco
# ex: set tabstop=8 softtabstop=0 expandtab shiftwidth=2 smarttab:
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
import os
import json
import socket
import sys
import threading
from pprint import pprint as pp
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
#ap.add_argument("-i", "--input", required=True,
# help="path to input video")
#ap.add_argument("-o", "--output", required=True,
# help="path to output video")
ap.add_argument("-y", "--yolo", required=True,
help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,
help="threshold when applyong non-maxima suppression")
ap.add_argument("-u", "--use-gpu", type=int, default=0,
help="boolean indicating if CUDA GPU should be used")
ap.add_argument("-co", "--codec", type=int, default=0,
help="chose codec for compression, 0 = MJEG, 1=H264")
args = vars(ap.parse_args())
################## Server Module ##################
connections = []
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_address = ('0.0.0.0', 10000)
sock.bind(server_address)
sock.listen(10)
def accept_conn():
while True:
connection, client_address = sock.accept()
connections.append({'conn': connection, 'addr': client_address})
t = threading.Thread(target=accept_conn)
t.start()
###################################################
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
# and determine only the *output* layer names that we need from YOLO
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
print(args["use_gpu"])
if args["use_gpu"]:
# set CUDA as the preferable backend and target
print("[INFO] setting preferable backend and target to CUDA...")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initialize the video stream, pointer to output video file, and
# frame dimensions
#vs = cv2.VideoCapture(args["input"])
print("[INFO] starting video stream...")
vs = VideoStream(src=3).start()
time.sleep(2.0)
#writer = None
(W, H) = (None, None)
# try to determine the total number of frames in the video file
#try:
# prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \
# else cv2.CAP_PROP_FRAME_COUNT
# total = int(vs.get(prop))
# print("[INFO] {} total frames in video".format(total))
# an error occurred while trying to determine the total
# number of frames in the video file
#except:
# print("[INFO] could not determine # of frames in video")
# print("[INFO] no approx. completion time can be provided")
# total = -1
# loop over frames from the video file stream
while True:
# read the next frame from the file
#(grabbed, frame) = vs.read()
frame = vs.read()
#frame = imutils.resize(frame, width=400)
frame = imutils.resize(frame, width=1200)
# if the frame was not grabbed, then we have reached the end
# of the stream
#if not grabbed:
# break
# if the frame dimensions are empty, grab them
if W is None or H is None:
(H, W) = frame.shape[:2]
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
send_data = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]: # and classID in [0]:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
args["threshold"])
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
send_data.append({
'x': int(boxes[i][0]),
'y': int(boxes[i][1]),
'width': int(boxes[i][2]),
'height': int(boxes[i][3]),
'confidences': float(confidences[i]),
'class_id': int(classIDs[i]),
'label': LABELS[classIDs[i]]
})
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the frame
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
cv2.putText(frame, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
pp(send_data)
################## Server Module ##################
tmp = json.dumps(send_data).encode('utf-8')
for i in range(len(connections)):
try:
connections[i]['conn'].sendall(tmp)
except BrokenPipeError as e:
connections.pop(i)
break
except ConnectionResetError as e:
connections.pop(i)
break
###################################################
# check if the video writer is None
#if writer is None:
# initialize our video writer
# fourcc = cv2.VideoWriter_fourcc(*"MJPG")
# writer = cv2.VideoWriter(args["output"], fourcc, 30,
# (frame.shape[1], frame.shape[0]), True)
# some information on processing single frame
# if total > 0:
# elap = (end - start)
# print("[INFO] single frame took {:.4f} seconds".format(elap))
# print("[INFO] estimated total time to finish: {:.4f}".format(
# elap * total))
# write the output frame to disk
#writer.write(frame)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# release the file pointers
print("[INFO] cleaning up...")
#writer.release()
vs.stop()
cv2.destroyAllWindows()
vs.release()