-
Notifications
You must be signed in to change notification settings - Fork 294
/
cuda-to-cv.py
executable file
·68 lines (52 loc) · 2.46 KB
/
cuda-to-cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python3
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import cv2
import argparse
from jetson_utils import (loadImage, cudaAllocMapped, cudaConvertColor,
cudaDeviceSynchronize, cudaToNumpy)
# parse the command line
parser = argparse.ArgumentParser(description='Convert an image from CUDA to OpenCV')
parser.add_argument("file_in", type=str, default="images/jellyfish.jpg", nargs='?', help="filename of the input image to process")
parser.add_argument("file_out", type=str, default="images/test/cuda-to-cv.jpg", nargs='?', help="filename of the output image to save")
opt = parser.parse_args()
# load the image into CUDA memory
rgb_img = loadImage(opt.file_in)
print('RGB image: ')
print(rgb_img)
# convert to BGR, since that's what OpenCV expects
bgr_img = cudaAllocMapped(width=rgb_img.width,
height=rgb_img.height,
format='bgr8')
cudaConvertColor(rgb_img, bgr_img)
print('BGR image: ')
print(bgr_img)
# make sure the GPU is done work before we convert to cv2
cudaDeviceSynchronize()
# convert to cv2 image (cv2 images are numpy arrays)
cv_img = cudaToNumpy(bgr_img)
print('OpenCV image size: ' + str(cv_img.shape))
print('OpenCV image type: ' + str(cv_img.dtype))
# save the image
if opt.file_out is not None:
cv2.imwrite(opt.file_out, cv_img)
print("saved {:d}x{:d} test image to '{:s}'".format(bgr_img.width, bgr_img.height, opt.file_out))