-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolution.py
56 lines (50 loc) · 1.3 KB
/
Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Input:
grid =
[[0,0,0],
[1,1,0],
[0,0,0],
[0,1,1],
[0,0,0]],
k = 1
Output: 6
Explanation:
The shortest path without eliminating any obstacle is 10.
The shortest path with one obstacle elimination at position (3,2) is 6. Such path is (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).
Input:
grid =
[[0,1,1],
[1,1,1],
[1,0,0]],
k = 1
Output: -1
Explanation:
We need to eliminate at least two obstacles to find such a walk.
"""
def shortestPath(self, grid, K):
if not grid or not grid[0]:
return 0
m, n = len(grid), len(grid[0])
cnt = 0
q = [(0,0,K)]
while q:
N = len(q)
for _ in range(N):
x, y, k = q.pop(0)
# base case
if x == m - 1 and y == n - 1:
return cnt
# mark current node as visited
grid[x][y] = -2
# bfs
for a, b in [[-1,0],[1,0],[0,-1],[0,1]]:
i, j = x + a, y + b
# out of range
if i < 0 or i >= m or j < 0 or j >= n or grid[i][j] == -2:
continue
if grid[i][j] == 0:
q.append((i, j, k))
elif grid[i][j] == 1 and k > 0:
q.append((i, j, k - 1))
cnt += 1
return -1 if grid[m - 1][n - 1] != -2 else cnt