forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
115 lines (84 loc) · 3.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
import argparse
import os
import shlex
import subprocess
import tempfile
import numpy as np
import sagemaker
import tensorflow as tf
from sagemaker.estimator import Estimator
NUM_CLASSES = 10
sagemaker_session = sagemaker.Session()
def build_image(name, version):
cmd = "docker build -t %s --build-arg VERSION=%s -f Dockerfile ." % (name, version)
subprocess.check_call(shlex.split(cmd))
def push_image(name):
cmd = "aws ecr get-login --no-include-email --region us-west-2"
login = subprocess.check_output(shlex.split(cmd)).strip()
subprocess.check_call(shlex.split(login))
cmd = "docker push %s" % name
subprocess.check_call(shlex.split(cmd))
def get_tensorflow_version_tag(framework_version, instance_type):
is_gpu = instance_type[3] == "p"
return "%s-gpu" % framework_version if is_gpu else framework_version
def get_image_name(ecr_repository, tensorflow_version_tag):
return "%s:tensorflow-%s" % (ecr_repository, tensorflow_version_tag)
def upload_channel(channel_name, x, y):
y = tf.keras.utils.to_categorical(y, NUM_CLASSES)
file_path = tempfile.mkdtemp()
np.savez_compressed(os.path.join(file_path, "cifar-10-npz-compressed.npz"), x=x, y=y)
return sagemaker_session.upload_data(
path=file_path, key_prefix="data/DEMO-keras-cifar10/%s" % channel_name
)
def upload_training_data():
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
train_data_location = upload_channel("train", x_train, y_train)
test_data_location = upload_channel("test", x_test, y_test)
return {"train": train_data_location, "test": test_data_location}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ecr-repository",
help="ECR repo where images will be pushed",
default="add-ecr-repo-here",
required=True,
)
parser.add_argument("--tf-version", default="latest")
parser.add_argument(
"--instance-type", default="local", choices=["local", "ml.c5.xlarge", "ml.p2.xlarge"]
)
args = parser.parse_args()
tensorflow_version_tag = get_tensorflow_version_tag(args.tf_version, args.instance_type)
image_name = get_image_name(args.ecr_repository, tensorflow_version_tag)
build_image(image_name, tensorflow_version_tag)
if not args.instance_type.startswith("local"):
push_image(image_name)
hyperparameters = dict(
batch_size=32,
data_augmentation=True,
learning_rate=0.0001,
width_shift_range=0.1,
height_shift_range=0.1,
)
estimator = Estimator(
image_name,
role="SageMakerRole",
train_instance_count=1,
train_instance_type=args.instance_type,
hyperparameters=hyperparameters,
)
channels = upload_training_data()
estimator.fit(channels)