-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUtlis2.py
136 lines (103 loc) · 3.91 KB
/
Utlis2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Some codes from https://github.com/Newmu/dcgan_code
"""
from __future__ import division
import math
import json
import random
import pprint
import scipy.misc
import numpy as np
import scipy.io as sio
from time import gmtime, strftime
from six.moves import xrange
import tensorflow as tf
import tensorflow.contrib.slim as slim
pp = pprint.PrettyPrinter()
def merge2(images,size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1],3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx / size[1]
j = int(j)
img[int(j*h):int(j*h+h), int(i*w):int(i*w+w),0:3] = image
return img
def get_stddev(x, k_h, k_w): return 1 / \
math.sqrt(k_w * k_h * x.get_shape()[-1])
def show_all_variables():
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
def get_image(image_path, input_height, input_width,
resize_height=128, resize_width=128,
crop=True, grayscale=False):
image = imread(image_path, grayscale)
return transform(image, input_height, input_width,
resize_height, resize_width, crop)
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def imread(path, grayscale=False):
if (grayscale):
return scipy.misc.imread(path, flatten=True).astype(np.float)
else:
return scipy.misc.imread(path).astype(np.float)
def merge_images(images, size):
return inverse_transform(images)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
if (images.shape[3] in (3, 4)):
c = images.shape[3]
img = np.zeros((h * size[0], w * size[1], c))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w, :] = image
return img
elif images.shape[3] == 1:
img = np.zeros((h * size[0], w * size[1]))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j * h:j * h + h, i * w:i * w + w] = image[:, :, 0]
return img
else:
raise ValueError('in merge(images,size) images parameter '
'must have dimensions: HxW or HxWx3 or HxWx4')
def imsave(images, size, path):
image = np.squeeze(merge(images, size))
return scipy.misc.imsave(path, image)
def center_crop(x, crop_h, crop_w,
resize_h=128, resize_w=128):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h) / 2.))
i = int(round((w - crop_w) / 2.))
return scipy.misc.imresize(
x[j:j + crop_h, i:i + crop_w], [resize_h, resize_w])
def transform(image, input_height, input_width,
resize_height=128, resize_width=128, crop=True):
if crop:
cropped_image = center_crop(
image, input_height, input_width,
resize_height, resize_width)
else:
cropped_image = scipy.misc.imresize(
image, [resize_height, resize_width])
return np.array(cropped_image) / 127.5 - 1.
def inverse_transform(images):
return (images + 1.) / 2.
def visualize(sess, gan, config):
image_frame_dim_h = 8
image_frame_dim_w = 8
for idx in xrange(100):
print(" [*] %d" % idx)
z_sample = np.random.uniform(-1, 1, size=(gan.sample_num, gan.z_dim))
samples = sess.run(gan.sampler, feed_dict={gan.z: z_sample})
save_images(samples, [image_frame_dim_h, image_frame_dim_w],
'./samples/test_arange_%s.png' % (idx))
def image_manifold_size(num_images):
manifold_h = 8
manifold_w = 8
assert manifold_h * manifold_w == num_images
return manifold_h, manifold_w