-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
249 lines (206 loc) · 9.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import sys
import os
import torch
import torch.nn as nn
import numpy as np
# import torchvision
from torch.utils.data import DataLoader
from datetime import datetime
import random
import argparse
from utils import *
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--input_path', type=str, default='dataset/toyset/',
help='Input dataset path')
parser.add_argument('--input_size', type=int, default=16,
help='Dimention of the poi/user')
parser.add_argument('--hidden_size', type=int, default=16,
help='Set the output_size of LSTM')
parser.add_argument('--layers', type=int, default=2,
help='Set the layers of LSTM')
parser.add_argument('--lr', type=float, default=0.001,
help='Set the learning rate')
parser.add_argument('--delt_t', type=float, default=6.0,
help='Set the delt_t')
parser.add_argument('--epochs', type=int, default=20,
help='Set the epochs')
parser.add_argument('--dr', type=float, default=0.2,
help='Set the drop rate')
parser.add_argument('--seed', type=int, default=1,
help='Set the random seed')
parser.add_argument('--test_sample_num', type=int, default=100,
help='Set the number of test records')
return parser.parse_args()
def log(fname, s):
f = open(fname, 'a')
f.write(str(datetime.now()) + ': ' + s + '\n')
f.close()
def switch_list_to_tensor():
print(PATH)
start_time = time.time()
print('Loading configuration!')
history = read_history(PATH+'train_checkin_file.txt')
final_model2 = read_vec(PATH+'vec_2nd_wo_norm.txt')
print('fnished read!')
final_model2 = normalize_dict(final_model2)
print('finished normalized!')
# final_model= connecate(final_model1,final_model2)
for k,v in final_model2.items():
final_model2[k] = torch.Tensor(v)
return final_model2 # final_model2['124'].shape[0]= 16
def switch_tensor_to_array(final_model2):
for k,v in final_model2.items():
final_model2[k] = v.numpy()
return final_model2
def gen_train_data(final_model2):
train_user_records = generate_user_records(PATH+'train_checkin_file.txt')
less_three_records_user_list = []
for k in train_user_records.keys():
if len(train_user_records[k]) < 3:
less_three_records_user_list.append(k)
for k in less_three_records_user_list:
train_user_records.pop(k)
LSTM_train_records_output = []
LSTM_train_records_input = []
index = 0
for userid,poi_list in train_user_records.items():
userid_tensor = final_model2[userid]
LSTM_train_records_input.append([])
LSTM_train_records_output.append([])
for poi in poi_list:
LSTM_train_records_input[index].append(torch.cat((userid_tensor, final_model2[poi]), 0))
LSTM_train_records_output[index].append(final_model2[poi])
index = index + 1
for index,item in enumerate(LSTM_train_records_input):
LSTM_train_records_input[index] = item[:-1]
for index,item in enumerate(LSTM_train_records_output):
LSTM_train_records_output[index] = item[1:]
LSTM_train_records_input_ = []
LSTM_train_records_output_ = []
for index,tensor_list in enumerate(LSTM_train_records_input):
tensor = tensor_list[0]
for item in tensor_list[1:]:
tensor = torch.cat((tensor, item), 0)
tensor = tensor.view(len(tensor_list), -1)
LSTM_train_records_input_.append(tensor)
for index,tensor_list in enumerate(LSTM_train_records_output):
tensor = tensor_list[0]
for item in tensor_list[1:]:
tensor = torch.cat((tensor, item), 0)
tensor = tensor.view(len(tensor_list), -1)
LSTM_train_records_output_.append(tensor)
print('gen_train_data')
return LSTM_train_records_input_, LSTM_train_records_output_
def gen_test_data(final_model2):
train_user_records = generate_user_records(PATH+'train_checkin_file.txt')
test_user_records = generate_user_records(PATH+'test_checkin_file.txt')
LSTM_test_records = gen_LSTM_test_records(train_user_records, test_user_records, PATH+'test_checkin_file.txt',delt_t=DELT_T)
random.seed(SEED)
LSTM_test_records = random.sample(LSTM_test_records, TEST_SAMPLE_NUM)
LSTM_test_records_input = []
LSTM_test_records_output = []
LSTM_test_user_list = []
for userid,input_poi_list,target_poi_list in LSTM_test_records:
userid_tensor = final_model2[userid]
input_ = []
try:
for poi in input_poi_list:
input_.append(torch.cat((userid_tensor, final_model2[poi]), 0))
LSTM_test_records_input.append(input_)
LSTM_test_records_output.append(target_poi_list)
LSTM_test_user_list.append(userid)
except:
continue
LSTM_test_records_input_ = []
for index,tensor_list in enumerate(LSTM_test_records_input):
tensor = tensor_list[0]
for item in tensor_list[1:]:
tensor = torch.cat((tensor, item), 0)
tensor = tensor.view(len(tensor_list), -1)
LSTM_test_records_input_.append(tensor)
print('gen_test_data')
return LSTM_test_records_input_, LSTM_test_records_output, LSTM_test_user_list
class lstm(nn.Module):
def __init__(self):
super(lstm, self).__init__()
self.rnn = nn.LSTM(
input_size = INPUT_SIZE,
hidden_size = HIDDEN_SIZE,
num_layers = LAYERS,
dropout = DROP_RATE,
batch_first = False
)
self.hidden_out = nn.Linear(HIDDEN_SIZE, int(INPUT_SIZE/2))
self.h_s = None
self.h_c = None
def forward(self, x):
r_out, (h_s, h_c) = self.rnn(x)
output = self.hidden_out(r_out)
return output
if __name__ == "__main__":
args = parse_args()
PATH = args.input_path
INPUT_SIZE = args.input_size * 2
HIDDEN_SIZE = args.hidden_size
DELT_T = args.delt_t
TEST_SAMPLE_NUM = args.test_sample_num
LAYERS = args.layers
DROP_RATE = args.dr
LR = args.lr
EPOCHS = args.epochs
SEED = args.seed
random.seed(SEED)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(SEED)
final_model2 = switch_list_to_tensor()
LSTM_train_records_input, LSTM_train_records_output = gen_train_data(final_model2)
train = zip(LSTM_train_records_input, LSTM_train_records_output) # iterator
train_ = []
for pairs in train:
train_.append((pairs[0].view(-1,1,INPUT_SIZE), pairs[1].view(-1,1,int(INPUT_SIZE/2))))
LSTM_test_records_input, LSTM_test_target_poi_list, LSTM_test_user_list = gen_test_data(final_model2)
rnn = lstm().to(device)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss()
mult_step_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[EPOCHS//2, EPOCHS//4*3], gamma=0.1)
train_loss = []
min_valid_loss = np.inf
print('Training...')
for i in range(EPOCHS):
total_train_loss = []
rnn.train()
for step, (b_x, b_y) in enumerate(train_):
b_x = b_x.type(torch.FloatTensor).to(device)
b_y = b_y.type(torch.FloatTensor).to(device)
prediction = rnn(b_x)
loss = loss_func(prediction, b_y)
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
total_train_loss .append(loss.item())
train_loss.append(np.mean(total_train_loss ))
random.shuffle(train_)
log_string = ('iter: [{:d}/{:d}], train_loss: {:0.6f}, lr: {:0.7f}').format((i + 1), EPOCHS, train_loss[-1], optimizer.param_groups[0]['lr'])
mult_step_scheduler.step()
print(log_string)
log('./LSTM.log', log_string)
rnn = rnn.eval()
candidate_pois_tensor = []
for step, b_x in enumerate(LSTM_test_records_input):
b_x = b_x.view(-1,1,int(INPUT_SIZE))
b_x = b_x.type(torch.FloatTensor).to(device)
prediction = rnn(b_x)
prediction = prediction[-1][-1]
candidate_pois_tensor.append(prediction)
norm_candidate_pois_array = []
for item in candidate_pois_tensor:
item = item.detach().cpu().numpy()
item = normalize(item)
norm_candidate_pois_array.append(item)
final_model2 = switch_tensor_to_array(final_model2)
node_type = get_node_type(PATH+'node_type.txt')
history = read_history(PATH+'train_checkin_file.txt')
print('evaluate!')
accuracy, precision, recall, ndcg, hit_ratio, MAP = evaleate_all_index_LSTM_no_history(norm_candidate_pois_array, LSTM_test_target_poi_list, node_type, final_model2)