Skip to content

Latest commit

 

History

History
34 lines (26 loc) · 1.45 KB

README.md

File metadata and controls

34 lines (26 loc) · 1.45 KB

Documentation Status

Overview

A simple, SciPy like interface for the excellent nonlinear optimization library NLopt to make switching between SciPy and NLopt a piece of cake. SimpleNLopt's functions can act as a drop-in replacement for SciPy functions. Major differences compared to plain NLopt:

  • SciPy like minimize(method='NLopt algorithm') API for NLopt's local optimizers
  • Automatic numerical approximation of the gradient if analytical gradient is not available
  • Automatic handling of constraints via the augmented lagrangian method without boilerplate code
  • Scipy like interfaces to NLopt's global optimizers with hard stopping criteria
  • SciPy like curve fitting using NLopt's algorithms

Documentation

Refer to the online documentation for detailed description of the API and examples

Installation

pip install simplenlopt

Example: Minimizing the Rosenbrock function in simplenlopt and scipy

import simplenlopt
from scipy.optimize import rosen, rosen_der
import scipy
import numpy as np

x0 = np.array([0.5, 1.8])

res = simplenlopt.minimize(rosen, x0, jac = rosen_der)
print("Found optimum: ", res.x)

res_scipy = scipy.optimize.minimize(rosen, x0, jac = rosen_der)
print("Found optimum: ", res_scipy.x)