-
Notifications
You must be signed in to change notification settings - Fork 35
/
neighbors.py
executable file
·149 lines (123 loc) · 5.65 KB
/
neighbors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Methods to extract protein interface labels pair."""
import click
import numpy as np
import pandas as pd
import scipy.spatial as spa
import atom3d.util.log as log
logger = log.get_logger('neighbors')
index_columns = \
['ensemble', 'subunit', 'structure', 'model', 'chain', 'residue']
def neighbors_from_ensemble(ensemble, cutoff, cutoff_type):
_, (bdf0, bdf1, udf0, udf1) = get_subunits(ensemble)
neighbors = get_neighbors(bdf0, bdf1, cutoff, cutoff_type)
if udf0 is not None and udf1 is not None:
# Map to unbound.
neighbors['subunit0'] = neighbors['subunit0'].apply(
lambda x: x.replace('bound', 'unbound'))
neighbors['subunit1'] = neighbors['subunit1'].apply(
lambda x: x.replace('bound', 'unbound'))
neighbors['structure0'] = neighbors['structure0'].apply(
lambda x: x.replace('_b_', '_u_'))
neighbors['structure1'] = neighbors['structure1'].apply(
lambda x: x.replace('_b_', '_u_'))
neighbors = remove_unmatching(neighbors, udf0, udf1)
return neighbors
def get_subunits(ensemble):
subunits = ensemble['subunit'].unique()
if len(subunits) == 4:
lb = [x for x in subunits if x.endswith('ligand_bound')][0]
lu = [x for x in subunits if x.endswith('ligand_unbound')][0]
rb = [x for x in subunits if x.endswith('receptor_bound')][0]
ru = [x for x in subunits if x.endswith('receptor_unbound')][0]
bdf0 = ensemble[ensemble['subunit'] == lb]
bdf1 = ensemble[ensemble['subunit'] == rb]
udf0 = ensemble[ensemble['subunit'] == lu]
udf1 = ensemble[ensemble['subunit'] == ru]
names = (lb, rb, lu, ru)
elif len(subunits) == 2:
udf0, udf1 = None, None
bdf0 = ensemble[ensemble['subunit'] == subunits[0]]
bdf1 = ensemble[ensemble['subunit'] == subunits[1]]
names = (subunits[0], subunits[1], None, None)
else:
raise RuntimeError('Incorrect number of subunits for pair')
return names, (bdf0, bdf1, udf0, udf1)
def remove_unmatching(neighbors, df0, df1):
# Remove entries that are not present in input structures.
_, res_to_idx = _get_idx_to_res_mapping(
pd.concat([df0, df1]))
to_drop = []
for i, neighbor in neighbors.iterrows():
res0 = tuple(neighbor[['ensemble0', 'subunit0', 'structure0', 'model0',
'chain0', 'residue0']])
res1 = tuple(neighbor[['ensemble1', 'subunit1', 'structure1', 'model1',
'chain1', 'residue1']])
if res0 not in res_to_idx or res1 not in res_to_idx:
to_drop.append(i)
logger.info(
f'Removing {len(to_drop):} / {len(neighbors):} due to no matching '
f'residue in unbound.')
neighbors = neighbors.drop(to_drop).reset_index(drop=True)
return neighbors
def get_neighbors(df0, df1, cutoff, cutoff_type):
"""Given pair of structures, generate neighbors."""
if cutoff_type == 'CA':
neighbors = _get_ca_neighbors(df0, df1, cutoff)
else:
neighbors = _get_heavy_neighbors(df0, df1, cutoff)
neighbors['label'] = 1
return neighbors
def get_res(df):
"""Get all residues."""
return df[index_columns].drop_duplicates()
def get_negatives(neighbors, df0, df1):
"""Get negative pairs, given positives."""
idx_to_res0, res_to_idx0 = _get_idx_to_res_mapping(df0)
idx_to_res1, res_to_idx1 = _get_idx_to_res_mapping(df1)
all_pairs = np.zeros((len(idx_to_res0.index), len(idx_to_res1.index)))
for i, neighbor in neighbors.iterrows():
res0 = tuple(neighbor[['ensemble0', 'subunit0', 'structure0', 'model0',
'chain0', 'residue0']])
res1 = tuple(neighbor[['ensemble1', 'subunit1', 'structure1', 'model1',
'chain1', 'residue1']])
idx0 = res_to_idx0[res0]
idx1 = res_to_idx1[res1]
all_pairs[idx0, idx1] = 1
pairs = np.array(np.where(all_pairs == 0)).T
res0 = idx_to_res0.iloc[pairs[:, 0]][index_columns]
res1 = idx_to_res1.iloc[pairs[:, 1]][index_columns]
res0 = res0.reset_index(drop=True).add_suffix('0')
res1 = res1.reset_index(drop=True).add_suffix('1')
res = pd.concat((res0, res1), axis=1)
return res
def _get_idx_to_res_mapping(df):
"""Define mapping from residue index to single id number."""
idx_to_res = get_res(df).reset_index(drop=True)
res_to_idx = idx_to_res.reset_index().set_index(index_columns)['index']
return idx_to_res, res_to_idx
def _get_ca_neighbors(df0, df1, cutoff):
"""Get neighbors for alpha-carbon based distance."""
ca0 = df0[df0['name'] == 'CA']
ca1 = df1[df1['name'] == 'CA']
dist = spa.distance.cdist(ca0[['x', 'y', 'z']], ca1[['x', 'y', 'z']])
pairs = np.array(np.where(dist < cutoff)).T
res0 = ca0.iloc[pairs[:, 0]][index_columns]
res1 = ca1.iloc[pairs[:, 1]][index_columns]
res0 = res0.reset_index(drop=True).add_suffix('0')
res1 = res1.reset_index(drop=True).add_suffix('1')
res = pd.concat((res0, res1), axis=1)
return res
def _get_heavy_neighbors(df0, df1, cutoff):
"""Get neighbors for heavy atom based distance."""
heavy0 = df0[df0['element'] != 'H']
heavy1 = df1[df1['element'] != 'H']
dist = spa.distance.cdist(heavy0[['x', 'y', 'z']], heavy1[['x', 'y', 'z']])
pairs = np.array(np.where(dist < cutoff)).T
res0 = heavy0.iloc[pairs[:, 0]][index_columns]
res1 = heavy1.iloc[pairs[:, 1]][index_columns]
res0 = res0.reset_index(drop=True).add_suffix('0')
res1 = res1.reset_index(drop=True).add_suffix('1')
# We concatenate and find unique _pairs_.
res = pd.concat((res0, res1), axis=1)
res = res.drop_duplicates()
return res