-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats-formulae.R
1936 lines (1622 loc) · 199 KB
/
stats-formulae.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LaTeX Template: Two Column Colour Article
%
% Source: http://www.howtotex.com/
% Feel free to distribute this template, but please keep the
% referal to howtotex.com.
% Date: Feb 2011
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% How to use overleaf.com:
%
% You edit the source code here on the left, and the preview on the
% right shows you the result within a few seconds.
%
% You can upload figures, bibliographies, custom classes and
% styles using the files menu.
%
% If you're new to LaTeX, the wikibook is a great place to start:
% http://en.wikibooks.org/wiki/LaTeX
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% adaptions made by wolfgang stoettner [email protected]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Preamble
\documentclass[ DIV=calc,%
paper=a4,%
fontsize=11pt,%
twocolumn]{scrartcl} % KOMA-article class
\usepackage{lipsum} % Package to create dummy text
\usepackage[english]{babel} % English language/hyphenation
\usepackage[protrusion=true,expansion=true]{microtype} % Better typography
\usepackage{amsmath,amsfonts,amsthm} % Math packages
\usepackage[pdftex]{graphicx} % Enable pdflatex
\usepackage{wrapfig} % enable figure wrapping
\usepackage[svgnames]{xcolor} % Enabling colors by their 'svgnames'
\usepackage[hang, small,labelfont=bf,up,textfont=it,up]{caption} % Custom captions under/above floats
\usepackage{epstopdf} % Converts .eps to .pdf
\usepackage{subfig} % Subfigures
\usepackage{booktabs} % Nicer tables
\usepackage{fix-cm} % Custom fontsizes
\usepackage{booktabs} % prof. looking tables (www.en.wikibooks.org/wiki/LaTeX/Tables#Professional_tables)
%%% Custom sectioning (sectsty package)
\usepackage{sectsty} % Custom sectioning (see below)
\allsectionsfont{% % Change font of al section commands
\usefont{OT1}{phv}{b}{n}% % bch-b-n: CharterBT-Bold font
}
\sectionfont{% % Change font of \section command
\usefont{OT1}{phv}{b}{n}% % bch-b-n: CharterBT-Bold font
}
%%% Headers and footers
\usepackage{fancyhdr} % Needed to define custom headers/footers
\pagestyle{fancy} % Enabling the custom headers/footers
\usepackage{lastpage}
% Header (empty)
\lhead{}
\chead{}
\rhead{\today}
% Footer (you may change this to your own needs)
\lfoot{\footnotesize \texttt{Statistics Formulae} \textbullet ~Lind et al. 16ed.}
\cfoot{}
\rfoot{\footnotesize page \thepage\ of \pageref{LastPage}} % "Page 1 of 2"
\renewcommand{\headrulewidth}{0.0pt}
\renewcommand{\footrulewidth}{0.4pt}
\newcommand{\hformbar}[1]{\vspace{5pt}\hrule\vspace{10pt}} % creates a horizontal bar to separate formulae better; space adaptions can be made centrally here
%%% Creating an initial of the very first character of the content
\usepackage{lettrine}
\newcommand{\initial}[1]{%
\lettrine[lines=3,lhang=0.3,nindent=0em]{
\color{DarkGoldenrod}
{\textsf{#1}}}{}}
%%% Title, author and date metadata
\usepackage{titling} % For custom titles
\newcommand{\HorRule}{\color{DarkGoldenrod}% % Creating a horizontal rule
\rule{\linewidth}{1pt}%
}
\pretitle{\vspace{-30pt} \begin{flushleft} \HorRule
\fontsize{30}{30} \usefont{OT1}{phv}{b}{n} \color{DarkRed} \selectfont
}
\title{Statistics Formulae Collection} % Title of your article goes here
\posttitle{\par\end{flushleft}\vskip 0.5em}
\preauthor{\begin{flushleft}\large \lineskip 0.5em \usefont{OT1}{phv}{b}{sl} \color{DarkRed}}
\author{Wolfgang W. Stoettner} % Author name goes here
\postauthor{\footnotesize \usefont{OT1}{phv}{m}{sl} \color{Black} \hspace{5pt} [email protected] \par\end{flushleft}\HorRule}
\date{\today} % No date
%%% wws: create a non-indented formula name
\newcommand{\formdesc}[1]{\noindent\textbf{#1}}
%%% Begin document -----------------------------------------------------------------
\begin{document}
\maketitle
\thispagestyle{fancy} % Enabling the custom headers/footers for the first page
% The first character should be within \initial{}
\initial{T}\textbf{he following collection represents an excerpt of the statistics formulae taken from the perennial text book \textit{Lind, Douglas A. et. al. (2015): Statistical Techniques in Business and Economics, Sixteenth edition, New York, NY 2015}.}
\hspace{10pt}
\hformbar
\formdesc{Frequency distributions}
\begin{equation}
\label{frequency distributions}
\end{equation}
\footnotesize Constructing frequency distributions where k is the smallest number of classes and n the number of observations:
\begin{enumerate}
\item decide on the number of classes k where \(2^k > n\)
\item determine the class interval i by \(i\geq\frac{\text{max value - min value}}{k}\)
\item set individual class limits.
\item tally the values into the classes.
\item count the number of items in each class.
\end{enumerate}
\hformbar
\formdesc{Population mean (raw data)}
\begin{equation}
\label{population mean raw data}
\mu =\frac{\sum x}{N}
\end{equation}
where:
\begin{itemize}
\item $\mu$ denotes the population mean.
\item $x$ denotes any value.
\item $N$ denotes the number of the values in the population.
\end{itemize}
\hformbar
\formdesc{Sample mean}
\begin{equation}
\label{sample mean}
\bar{x}=\frac{\sum x}{n}
\end{equation}
where:
\begin{itemize}
\item $\bar{x}$ denotes the sample mean.
\item $n$ denotes the number of values in the sample.
\item $x$ denotes any value.
\end{itemize}
\hformbar
\formdesc{median}
\begin{equation}
\label{median}
\end{equation}
The midpoint of the values after they have been ordered from the minimum to the maximum values. The data must be at least an ordinal level of measurement.
\hformbar
\formdesc{mode}
\begin{equation}
\label{mode}
\end{equation}
The value of the observation that appears most frequently. It is especially useful in summarizing ordinal level data.
\hformbar
\formdesc{Weighted mean}
\begin{equation}
\label{weighted mean}
\bar{x}_{w} = \frac{w_1 x_1 + w_2 x_2 + \cdots + w_n x_n}{w_1 + w_2 + \cdots + w_n} = \frac{ \sum\limits_{i=1}^n w_i x_i}{\sum\limits_{i=1}^n w_i}
\end{equation}
where:
\begin{itemize}
\item $\bar{x}_{w}$ denotes the weighted mean.
\item $w$ denotes the corresponding weight.
\end{itemize}
\hformbar
\formdesc{Geometric mean}
\begin{equation}
\label{geometric mean}
\text{Geometric mean} = \sqrt[n]{(x_{1})(x_{2}) \cdots (x_{n})}
\end{equation}
Note:\\
Useful in finding the \emph{average change} -- in contrast to equation \eqref{rate of increase over time} -- of percentages, ratios, indices or growth rates over time. The geometric mean will always be less than or equal (never more than) the arithmetic mean. Also, all the data values must be \emph{positive}. It is applied in Fisher's Ideal Index as in formula \eqref{fisher ideal index}.
\hformbar
\formdesc{Geometric mean for a rate increase over time}
\begin{equation}
\label{rate of increase over time}
\text{GM for a rate increase} = \sqrt[n]{\frac{\text{value at end of period}}{\text{value at start of period}}}-1
\end{equation}
\footnotesize Used to find an average percentage \emph{increase} (in contrast to \eqref{geometric mean}) over time.
\hformbar
\formdesc{Range}
\begin{equation}
\label{range}
\text{Range} = \text{maximum value} - \text{minimum value}
\end{equation}
\hformbar
\formdesc{Population variance}
\begin{equation}
\label{population variance}
\sigma^2 = \frac{\sum (x - \mu)^2}{N}
\end{equation}
\textrm{Note:} The population variance $\sigma^2$ in essence mitigates the dilemma of a single sample. In the first sample the deviation between observed value $x$ and the population mean $\mu$ might differ to a great extent, in a second sample the deviation might well be very different again. Here, $\sigma^2$ provides a measure for the average variance accounting for all samples for one unit of the population.
where:
\begin{itemize}
\item $\sigma^2$ is the population variance.
\item $x$ is the value of a particular observation in the population.
\item $\mu$ is the arithmetic mean of the population.
\item $N$ is the number of observations in the population.
\end{itemize}
\hformbar
\formdesc{Population standard deviation}
\begin{equation}
\label{population standard deviation}
\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}
\end{equation}
\textrm{Note:} The population standard deviation $\sigma$ in essence mitigates the dilemma of a single sample (ref. \eqref{population variance} . In the first sample the deviation between observed value $x$ and the population mean $\mu$ might differ to a great extent, in a second sample the deviation might well be very different again. Here, $\sigma$ provides a measure for the average deviation accounting for all samples for one unit of the population in the same unit of measure as in the sample.
where:
\begin{itemize}
\item $\sigma$ is the population standard deviation.
\item $x$ is the value of a particular observation in the population.
\item $\mu$ is the arithmetic mean of the population.
\item $N$ is the number of observations in the population.
\footnotesize By taking the square root of the variance the deviation is now of the same unit of measurement as the original data.
\end{itemize}
\hformbar
\formdesc{Sample variance}
\begin{equation}
\label{sample variance}
s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}
\end{equation}
where:
\begin{itemize}
\item $s^2$ is the sample variance.
\item $x$ is the value of a each observation in the sample.
\item $\bar{x}$ is the mean of the sample.
\item $n$ is the number of observations in the sample.
\item The denominator $(n -1)$ corrects its tendency for underestimation.
\end{itemize}
\hformbar
\formdesc{Sample standard deviation}
\begin{equation}
\label{sample standard deviation}
s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}
\end{equation}
where:
\begin{itemize}
\item $s$ is the sample standard deviation.
\item $x$ is the value of a each observation in the sample.
\item $\bar{x}$ is the mean of the sample.
\item $n$ is the number of observations in the sample.
\item By taking the square root of the variance the deviation is now of the same unit of measurement as the original data.
\end{itemize}
\hformbar
\formdesc{Chebyshev's Theorem}
\begin{equation}
\label{chebyshev's Theorem}
\end{equation}\textbf{Chebyshev's Theorem}\\
For any set of observations (sample or population), the proportion of the values that lie within \emph{k} standard deviations of the mean is at least $1 - \frac{1}{k^2}$, where \emph{k} is any value greater than 1.
\hformbar
\formdesc{Arithmetic mean of grouped data}
\begin{equation}
\label{arithmetic mean of grouped data}
\bar{x} = \frac{\sum{fM}}{n}
\end{equation}
where:
\begin{itemize}
\item $\bar{x}$ is the sample mean.
\item $M$ is the midpoint of each class.
\item $f$ is the frequency in each class.
\item $n$ is the total number of frequencies.
\end{itemize}
\hformbar
\formdesc{Standard deviation of grouped data}
\begin{equation}
\label{standard deviation of grouped data}
s = \sqrt{\frac{\sum f(M - \bar{x})^2}{n - 1}}
\end{equation}
where:
\begin{itemize}
\item $s$ is the sample standard deviation.
\item $M$ is the midpoint of the class.
\item $f$ is the the class frequency.
\item $\bar{x}$ is the mean of the sample.
\item $n$ is the number of observations in the sample.
\end{itemize}
\hformbar
\formdesc{Location of percentile}
\begin{equation}
\label{location of percentile}
L_{p} = (n + 1)\frac{P}{100}
\end{equation}
where:
\begin{itemize}
\item $P$ is the percentile.
\item $n$ is the number of observations.
\item $L_{p}$ is the location of the percentile.
\end{itemize}
\hformbar
\formdesc{Coefficient of Variation\footnote{(Lind et al., 2002, ISBN 0-07-112318-0, p. 115)}}
\begin{equation}
\label{coefficient of variation}
\text{CV} = \frac{s}{\bar{x}}(100)
\end{equation}
Note: multiplying by 100 converts the decimal to a percent
where:
\begin{itemize}
\item $s$ is the sample standard deviation.
\item $\bar{x}$ is the sample mean.
\end{itemize}
\hformbar
\formdesc{Pearson's coefficient of skewness}
\begin{equation}
\label{coefficient of skewness}
\text{sk} = \frac{3(\bar{x} - \text{median})}{s}
\end{equation}
where:
\begin{itemize}
\item $s$ is the sample standard deviation.
\item $\bar{x}$ is the sample mean.
\end{itemize}
\hformbar
\formdesc{Software coefficient of skewness}
\begin{equation}
\label{software coefficient of skewness}
\text{sk} = \frac{n}{(n - 1)(n - 2)}\left[\Sigma(\frac{x - \bar{x}}{s})^{3}\right]
\end{equation}
where:
\begin{itemize}
\item $n$ is the number of observation in the sample.
\item $s$ is the sample standard deviation.
\item $\bar{x}$ is the sample mean.
\end{itemize}
\hformbar
\formdesc{Classical probability}
\begin{equation}
\label{classical probability}
\text{Probability of an event} = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}}
\end{equation}
\hformbar
\formdesc{Empirical probability}
\begin{equation}
\label{empirical probability}
\text{Probability of an event} = \frac{\text{Number of times event occurred in the past}}{\text{Total number of observations}}
\end{equation}
\hformbar
\formdesc{Special Rule of Addition}
\begin{equation}
\label{special rule of addition}
\text{P(A or B)} = P(A) + P(B)
\end{equation}
Events must be \emph{mutually exclusive}.
\hformbar
\formdesc{Complement Rule}
\begin{equation}
\label{complement rule}
P(A) = 1 - P(\sim A)
\end{equation}
Events A and $\sim$A are mutually exclusive and collectively exhaustive.
\hformbar
\formdesc{General Rule of Addition}
\begin{equation}
\label{general rule of addition}
\text{P(A or B) = P(A) + P(B) - P(A and B)}
\end{equation}
Events that are \emph{not} mutually exclusive.
\hformbar
\formdesc{Special Rule of Multiplication}
\begin{equation}
\label{special rule of multiplication}
\text{P(A and B) = P(A)P(B)}
\end{equation}
Requires that two events are \emph{independent}, that is, the occurrence of one event has no effect on the probability of the occurrence of the other event.
\hformbar
\formdesc{General Rule of Multiplication}
\begin{equation}
\label{general rule of multiplication}
\text{P(A and B)} = \text{P(A)}P(B \vert A)
\end{equation}
where:
\begin{itemize}
\item P(B$\vert$A) stands for the probability of B will occur given that A has already occurred (conditional probability).
\item two events are \emph{not independent}.
\end{itemize}
\hformbar
\formdesc{Bayes' Theorem}
\begin{equation}
\label{bayes' theorem}
P(A_{i}\vert B) = \frac{P(A_{i})P(B \vert A_{i})}{P(A_{1})P(B \vert A_{1}) + P(A_{2})P(B \vert A_{2})}
\end{equation}
Events $A_{1}$ and $A_{2}$ are mutually exclusive and collectively exhaustive, and $A_{i}$ refers to either event $A_{1} or A_{2}$.
\hformbar
\formdesc{Multiplication Formula}
\begin{equation}
\label{multiplication formula}
\text{Total number of arrangements} = (m)(n)
\end{equation}
\hformbar
\formdesc{Permutation}
\begin{equation}
\label{permutation}
{}_nP_{r} = \frac{n!}{(n - r)!}
\end{equation}
Any arrangement of \emph{r} objects selected from a single group of \emph{n} possible objects.
\hformbar
\formdesc{Combination Formula}
\begin{equation}
\label{combination formula}
{}_nC_{r} = \frac{n!}{r!(n - r)!}
\end{equation}
The order of the selected objects is \emph{not important}.
\hformbar
\formdesc{Mean of a Probability Distribution}
\begin{equation}
\label{mean of probability distribution}
\mu = \Sigma \left[ xP(x) \right]
\end{equation}
where:
\begin{itemize}
\item $\mu$ is the population mean.
\item $P(x)$ is the probability.
\item $x$ is a particular value.
\end{itemize}
\hformbar
\formdesc{Variance of a Probability Distribution}
\begin{equation}
\label{variance of a probability distribution}
\sigma^{2} = \Sigma\left[ (x - \mu)^{2}P(x) \right]
\end{equation}
where:
\begin{itemize}
\item $\mu$ is the mean.
\item $P(x)$ is the probability.
\item $x$ is a particular value.
\end{itemize}
\hformbar
\formdesc{Binomial Probability Distribution (with replacement)}
\begin{equation}
\label{binomial probability distribution}
P(x) = {}_nC_{x}\pi^{x}(1 - \pi)^{n - x}
\end{equation}
where:
\begin{itemize}
\item $C$ denotes a combination.
\item $n$ is the number of trials.
\item $x$ is the number of successes.
\item $\pi$ is the probability of a success on each trial.
\end{itemize}
\hformbar
\formdesc{Mean of a Binomial Distribution (with replacement)}
\begin{equation}
\label{mean of a binomial distribution}
\mu = n\pi
\end{equation}
where:
\begin{itemize}
\item $\mu$ is the probability mean.
\item $n$ is the number of trials.
\item $\pi$ is the probability of a success on each trial.
\end{itemize}
\footnotesize The formula is identical to \eqref{mean of poisson distribution}.
\hformbar
\formdesc{Variance of a Binomial Distribution (with replacement)}
\begin{equation}
\label{variance of a binomial distribution}
\sigma^{2} = n\pi(1 - \pi)
\end{equation}
where:
\begin{itemize}
\item $n$ is the total number of trials.
\item $\pi$ is the probability of a success on each trial.
\end{itemize}
\hformbar
\formdesc{Hypergeometric Distribution (without replacement)}
\begin{equation}
\label{hypergeometric distribution}
P(x) = \frac{({}_SC_{x})(C^{N-S}_{n-x})}{{}_NC_{n}}
\end{equation}
where:
\begin{itemize}
\item $N$ is the size of the population.
\item $S$ is the number of successes in the population.
\item $x$ is the number of successes in the sample. It may be 0, 1, 2, 3, ...
\item $n$ is the size of the sample or the number of trials.
\item $C$ stands for a combination.
\end{itemize}
\hformbar
\formdesc{Poisson Distribution}
\begin{equation}
\label{poisson distribution}
P(x) = \frac{\mu^{x}e^{-\mu}}{x!}
\end{equation}
where:
\begin{itemize}
\item $\mu$ is the mean number of occurrences (successes) in a particular interval.
\item $e$ is the constant 2.71828 (base of the Naperian logarithmic system).
\item $x$ is the number of occurrences (successes).
\item $P(x)$ is the probability for a specified value of x.
\end{itemize}
\hformbar
\formdesc{Mean of a Poisson Distribution}
\begin{equation}
\label{mean of poisson distribution}
\mu = n\pi
\end{equation}
where:
\begin{itemize}
\item $\pi$ is the probability of success.
\item $n$ is the number of trials.
\item $n$ is the total number of trials.
\end{itemize}
\footnotesize The formula is identical to \eqref{mean of a binomial distribution}.
\hformbar
\formdesc{Mean of the Uniform Distribution}
\begin{equation}
\label{mean of the uniform distribution}
\mu = \frac{a + b}{2}
\end{equation}
where:
\begin{itemize}
\item $\mu$ is mean.
\end{itemize}
\hformbar
\formdesc{Standard Deviation of the Uniform Distribution}
\begin{equation}
\label{standard deviation of the uniform distribution}
\sigma = \sqrt{\frac{(b - a)^2}{12}}
\end{equation}
where:
\begin{itemize}
\item $\mu$ is the mean.
\item $a$ is minimum value of the interval.
\item $b$ is maximum value of the interval.
\end{itemize}
\hformbar
\formdesc{Uniform Distribution Probability}
\begin{equation}
\label{uniform distribution probability}
P(x) = (height)(base) = \frac{1}{b - a}(b-a)
\end{equation}
where:
\begin{itemize}
\item if $a \leq x \geq b$ and 0 elsewhere.
\item $\mu$ is the mean.
\item $a$ is minimum value of the interval.
\item $b$ is maximum value of the interval.
\end{itemize}
\hformbar
\formdesc{Normal Probability Distribution}
\begin{equation}
\label{normal probability distribution}
P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left[\frac{(x - \mu)^2}{2\sigma^2} \right]}
\end{equation}
where:
\begin{itemize}
\item $\sigma$ refers to the standard deviation.
\item $\mu$ refers to the mean.
\item $e$ is a constant, respectively, the base of the natural log system and approximately equals to 2.718.
\item $\pi$ a constant with an approximate value of $\frac{22}{7}$ or 3.1416.
\item $x$ refers to the value of the random variable.
\end{itemize}
\hformbar
\formdesc{Standard Normal Value (One Observation - $\sigma$ Known)}
\begin{equation}
\label{standard normal value}
z = \frac{x - \mu}{\sigma}
\end{equation}
Notice an important difference to equation \eqref{z value of sample mean}. Whereas equation \eqref{z value of sample mean} uses the sample mean $\bar{x}$, the population mean $\mu$, and the sample standard deviation $\frac{\sigma}{\sqrt{n}}$, this formula is used in cases where the $z$ value for \textbf{only one observation} is calculated.
where:
\begin{itemize}
\item $z$ denotes the signed distance between a selected value $x$ and the population mean $\mu$ divided by the population standard deviation $\sigma$.
\item $x$ is the value of any particular observation or measurement.
\item $\mu$ is the mean of the distribution.
\item $\sigma$ is the standard deviation of the distribution.
\end{itemize}
\hformbar
\formdesc{Continuity Correction Factor}
\begin{equation}
\label{continuity correction factor}
\begin{aligned}
\text{If for $P(x) \geq x$ then use $(x - 0.5)$}\\
\text{If for $P(x) > x$ then use $(x + 0.5)$}\\
\text{If for $P(x) \leq x$ then use $(x + 0.5)$}\\
\text{If for $P(x) < x$ then use $(x - 0.5)$}\\
\end{aligned}
\end{equation}
The value 0.5 is subtracted or added to a selected value when a discrete probability distribution is approximated by a continuous probability distribution.
\hformbar
\formdesc{Exponential Distribution}
\begin{equation}
\label{exponential distribution}
P(x) = \lambda e^{-\lambda x}
\end{equation}
where:
\begin{itemize}
\item $\lambda$ refers to the rate parameter and $\lambda = \frac{1}{\mu}$ or $\mu = \frac{1}{\lambda}$
\item $e$ is a constant, respectively, the base of the natural log system and approximately equals to 2.718.
\item $x$ refers to the value of the random variable.
\item Both the mean ($\mu$) and the standard deviation ($\sigma$) are equal to $\frac{1}{\lambda}$.
\end{itemize}
\hformbar
\formdesc{Probability of Exponential Distribution}
\begin{equation}
\label{probability of exponential distribution}
P(\text{arrival time $< x$}) = 1 - e^{-\lambda x}
\end{equation}
where:
\begin{itemize}
\item $\lambda$ refers to the rate parameter.
\item $e$ is a constant, respectively, the base of the natural log system and approximately equals to 2.718.
\item $x$ refers to the value of the random variable.
\item Both the mean ($\mu$) and the standard deviation ($\sigma$) are equal to $\frac{1}{\lambda}$.
\end{itemize}
\hformbar
\formdesc{Standard Error of the Mean}
\begin{equation}
\label{standard error of mean}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
\end{equation}
where:
\begin{itemize}
\item $\sigma_{\bar{x}}$ refers standard deviation of the sample means indicated by $\bar{x}$.
\item $n$ refers to the sample size.
\item $\sigma$ refers to the population standard deviation.
\end{itemize}
\hformbar
\formdesc{Standard Normal Value (More than One Observation - $\sigma$ known)}
\begin{equation}
\label{z value of sample mean}
z = \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}
\end{equation}
Notice an important difference to equation \eqref{standard normal value}. Whereas equation \eqref{standard normal value} uses the random variable $x$, the population mean $\mu$, and the population standard deviation $\sigma$, this formula is used in cases where the research refers to a \textbf{sample rather than to just one observation}.
where:
\begin{itemize}
\item $z$ refers to the distance between a selected value, designated $\bar{x}$, and the population mean $\mu$ divided by the standard error of the mean $\frac{\sigma}{\sqrt{n}}$ as in formula \eqref{standard error of mean}.
\item $\bar{x}$ refers to the sample mean.
\item $\mu$ refers to the population mean.
\item $\sigma$ refers to the population standard deviation.
\item $n$ refers to the sample size.
\end{itemize}
\hformbar
\formdesc{Confidence Interval for a Population Mean ($\sigma$ Known)}
\begin{equation}
\label{Confidence interval for a population mean with sigma known}
\bar{x} \pm z\frac{\sigma}{\sqrt{n}}
\end{equation}
where:
\begin{itemize}
\item $z$ the standardized distance from the mean $\mu$.
\item $\bar{x}$ refers for the population standard deviation.
\item $\sigma$ refers to the population standard deviation.
\item $n$ refers to the sample size.
\end{itemize}
\hformbar
\formdesc{Confidence Interval for a Population Mean ($\sigma$ Unknown)}
\begin{equation}
\label{Confidence interval for a population mean with sigma unknown}
\bar{x} \pm t \frac{s}{\sqrt{n}}
\end{equation}
where:
\begin{itemize}
\item $t$ refers to the t distribution.
\item $\bar{x}$ refers for the population standard deviation.
\item $s$ refers to the sample standard deviation.
\item $n$ refers to the sample size.
\end{itemize}
\hformbar
\formdesc{Sample Proportion}
\begin{equation}
\label{sample proportion}
p = \frac{x}{n}
\end{equation}
where:
\begin{itemize}
\item $p$ refers to the sample proportion.
\item $x$ refers for the number of successes.
\item $n$ refers to the sample size.
\end{itemize}
\hformbar
\formdesc{Confidence Interval for a Population Proportion}
\begin{equation}
\label{confidence interval for a population proportion}
p \pm z \sqrt{\frac{p(1-p)}{n}}
\end{equation}
where:
\begin{itemize}
\item $p$ refers to the sample proportion which is an estimate for the population proportion $\pi$.
\item $z$ refers for the standard distance from the mean $\mu$.
\item $n$ refers to the sample size.
\end{itemize}
\hformbar
\formdesc{Sample Size for Estimating the Population Mean}
\begin{equation}
\label{sample size for estimating the population mean}
E = z\frac{\sigma}{\sqrt{n}} \quad\text{solved for n yields}\quad n = (\frac{z\sigma}{E})^2
\end{equation}
where:
\begin{itemize}
\item $n$ refers to the sample size.
\item $z$ refers for the standard distance from the mean $\mu$.
\item $\sigma$ refers to the population standard deviation.
\item $E$ is the maximum allowable error.
\end{itemize}
\hformbar
\formdesc{Sample Size for the Population Proportion}
\begin{equation}
\label{sample size for the population proportion}
E = z\sqrt{\frac{\pi (1 - \pi)}{n}} \quad \text{solved for n yields} \quad n = \pi (1-\pi)(\frac{z}{E})^2
\end{equation}
where:
\begin{itemize}
\item $n$ is the size of the sample.
\item $z$ is the standard normal value corresponding to the desired level of confidence.
\item $\pi$ is the population proportion.
\item $E$ is the maximum allowable error.
\end{itemize}
\hformbar
\formdesc{Finite-Population Correction Factor}
\begin{equation}
\label{finite -population correction factor}
FPC = \sqrt{\frac{N - n}{N - 1}}
\end{equation}
\footnotesize To be used if the sample is a significant part of a finite population.
where:
\begin{itemize}
\item $n$ is the size of the sample.
\item $N$ is the size of the population.
\end{itemize}
\hformbar
\formdesc{Testing a Mean ($\sigma$ Known)}
\begin{equation}
\label{testing a mean sigma known}
z = \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}
\end{equation}
Refer to equation \eqref{z value of sample mean} that computes a $z$ value on the basis of a sample.\newline
The $z$ value is based on the sampling distribution of the sample mean $\bar{x}$, which follows the normal distribution with the sampling mean $\mu_{\bar{x}}$ equal to the population mean $\mu$ and a standard error of the mean $\sigma_{\bar{x}}$, with is equal to $\frac{\sigma}{\sqrt{n}}$.
where:
\begin{itemize}
\item $z$ refers to the distance between a selected value, designated $\bar{x}$, and the
mean $\mu$ divided by the standard error of the mean $\frac{\sigma}{\sqrt{n}}$ as in formula \eqref{standard error of mean}.
\item $\bar{x}$ refers for the sample mean.
\item $\mu$ refers to the population mean.
\item $\sigma$ refers to the population standard deviation.
\item $n$ refers to the sample size.
\end{itemize}
\hformbar
\formdesc{Testing a Mean ($\sigma$ Unknown)}
\begin{equation}
\label{testing a mean sigma unknown}
t = \frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}
\end{equation}
with $n-1$ degrees of freedom where:
\begin{itemize}
\item $\bar{x}$ is the sample mean.
\item $\mu$ is the hypothesized population mean.
\item $s$ is the sample standard deviation.
\item $n$ is the number of observations in the sample.
\end{itemize}
\hformbar
\formdesc{Type II Error}
\begin{equation}
\label{type II error}
z = \frac{\bar{x}_{C}-\mu_{1}}{\frac{\sigma}{\sqrt{n}}}
\end{equation}
Refer to equation \eqref{z value of sample mean} that computes a $z$ value on the basis of a sample.\newline
where:
\begin{itemize}
\item $\bar{x}_{C}$ is the sample mean of region C.
\item $\mu_{1}$ is the hypothesized population mean of region C.
\item $\sigma$ is the population standard deviation.
\item $n$ is the number of observations in the sample.
\end{itemize}
\hformbar
\formdesc{Two-Sample Test -- Variance of the Distribution of Differences ($\sigma$ Known)}
\begin{equation}
\label{variance of the distribution of differences in means}
\sigma^{2}_{\bar{x_{1}}-\bar{x_{2}}} = \frac{\sigma^{2}_{1}}{n_{1}} + \frac{\sigma^{2}_{2}}{n_{2}}
\end{equation}
where:
\begin{itemize}
\item $\sigma^{2}_{\bar{x_{1}}-\bar{x_{2}}}$ is variance of the differences in means.
\item $\bar{x}_{1}$ and $\bar{x}_{2}$ are the sample means of the first and second sample, respectively.
\item $n_{1}$ and $n_{2}$ are the sample sizes.
\end{itemize}
\hformbar
\formdesc{Two-Sample Test -- Test of Means ($\sigma$ Known)}
\begin{equation}
\label{two-sample test of means sigma known}
z = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{\frac{\sigma^{2}_{1}}{{n}_{1}}+\frac{{\sigma}^{2}_{2}}{n_{2}}}}
\end{equation}
Note: above formula refers to formula \eqref{pooled variance}. Using it stipulates the following\footnote{Lind et al., p. 351}:
\begin{enumerate}
\item the sampled populations are approximately normally distributed.
\item the sampled populations are independent.
\item the standard deviations of the two populations are \textbf{known}.
\end{enumerate}
where:
\begin{itemize}
\item $z$ refers to the standard value.
\item $\bar{x}$ refers for the sample mean.
\item $\sigma^{2}$ refers to the population variance.
\item $n$ refers to the sample size.
\end{itemize}
\hformbar
\formdesc{Two-Sample Test -- Pooled Variance ($\sigma$ Unknown)}
\begin{equation}
\label{pooled variance}
s^{2}_{p} = \frac{(n_{1} - 1)s^{2}_{1} + (n_{2}-1)s^{2}_{2}}{n_{1}+n_{2} -2}
\end{equation}
Note: using the pooled variance formula assumes following important assumptions for the test.
\begin{enumerate}
\item the sampled populations are approximately normally distributed.
\item the sampled populations are independent.
\item the standard deviations of the two populations are \textbf{equal}.
\end{enumerate}
In essence, the formula computes a weighted mean of the two sample standard deviations using the degrees of freedom that each sample provides. The resulting value serves then as an estimate for the unknown population standard deviation. The reason for pooling arises from the assumption that the two populations have \emph{equal standard deviations} and best estimate we can make of that value is to combine or pool all the sample information we have about the value of the population standard deviation. In contrast, formula \eqref{paired t test} assumes related or \emph{paired} samples. If such an assumption is reasonable the resulting hypothesis test is much more sensitive to detecting a significant difference than a hypothesis test based on independent samples compared to independent samples since we are able to \emph{reduce the variation} in the sampling distribution\footnote{Lind et al., p. 368}.
where:
\begin{itemize}
\item $s^{2}_{p}$ is pooled variance. Further used in equation \eqref{two-sample test of means sigma unknown} due to the assumption in that the two populations sampled have the same standard deviations.
\item $s^{2}_{1}$ is the variance of the first sample.
\item $s^{2}_{2}$ is the variance of the second sample.
\item $n_{1}$ is the sample size of the first sample.
\item $n_{2}$ is the sample size of the second sample.
\item $n_{1}+n_{2}-2$ is the degree of freedom usually denoted as $df$.
\end{itemize}
\hformbar
\formdesc{Two-Sample Test -- Test of Means ($\sigma$ Unknown)}
\begin{equation}
\label{two-sample test of means sigma unknown}
t = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{s^{2}_{p}(\frac{1}{n_{1}}+\frac{1}{n_{2}})}}
\end{equation}
Note: the pooled variance $s^{2}_{p}$ is to be computed using equation \eqref{pooled variance} beforehand. Therefore the same prerequisite applies here:
\begin{enumerate}
\item the sampled populations are approximately normally distributed.
\item the sampled populations are independent.
\item the standard deviations of the two populations are \textbf{equal}.
\end{enumerate}
Note: the \textbf{Wilcoxon rank-sum test} (ref. formula \eqref{wilcoxon rank sum test}) is an alternative to the Two-Sample t test. While the Two-Sample t test requires two populations follow the normal distribution and have equal population variances, these prerequisites \textbf{do not} apply for the Wilcoxon rank-sum test.
where:
\begin{itemize}
\item $\bar{x}_{1}$ is the mean of the first sample.
\item $\bar{x}_{2}$ is the mean of the second sample.
\item $n_{1}$ is the number of observations in the first sample.
\item $n_{2}$ is the number of observations in the second sample.
\item $s^{2}_{p}$ is the pooled estimate of the population variance.
\end{itemize}
\hformbar
\formdesc{Two-Sample Test -- Test Statistic for No Difference in Means, Unequal Variances ($\sigma$ Unknown)}
\begin{equation}
\label{test statistic for no difference in means unequal variances}
t = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{\frac{s^{2}_{1}}{n_{1}}+\frac{s^{2}_{2}}{n_{2}}}}
\end{equation}
Note: this equation differs only in one aspect from equation \eqref{two-sample test of means sigma unknown} in that the pooled variance $s^{2}_{p}$ could be used due to the assumption that both sample variances are equal. Since this formula assumes that both sample variances are \textbf{unequal} the denominator now splits into two components using $s^{2}_1{}$ and $s^{2}_{2}$ as variances.
where:
\begin{itemize}
\item $\bar{x}_{1}$ is the mean of the first sample.
\item $\bar{x}_{2}$ is the mean of the second sample.
\item $s^{2}_{1}$ is sample variance of the first sample.
\item $s^{2}_{2}$ is sample variance of the second sample.
\item $n_{1}$ is the number of observations in the first sample.
\item $n_{2}$ is the number of observations in the second sample.
\end{itemize}
\hformbar
\formdesc{Two-Sample Test -- Degrees of Freedom for Unequal Variance Test ($\sigma$ Unknown)}
\begin{equation}