-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_JAWS-X_active.py
329 lines (264 loc) · 18 KB
/
run_JAWS-X_active.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import sys
import time
from importlib import reload
module_path = os.path.abspath(os.path.join('../'))
if module_path not in sys.path:
sys.path.append(module_path)
import numpy as np
import assay
import calibrate as cal
## Drew added
import tqdm
from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import RandomForestRegressor
import pandas as pd
import argparse
from datetime import date
## Added for active learning experiments
from sklearn.neighbors import KernelDensity
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel, ConstantKernel, RBF
## test
if __name__ == "__main__":
start_time = time.time()
### Running JAW with neural network predictor
parser = argparse.ArgumentParser(description='Run JAW FCS experiments.')
# parser.add_argument('--fitness_str', type=str, default='red', help='Red or blue fluorescence experiments.')
parser.add_argument('--n_train_initial', type=int, default=64, help='Initial number of training points')
parser.add_argument('--n_val', type=int, default=800, help='Number of validation points')
parser.add_argument('--n_steps', type=int, default=8, help='Number of active learning steps')
parser.add_argument('--n_queries_ann', type=int, default=16, help='Number of queries to annotate')
parser.add_argument('--n_queries_cov', type=int, default=20, help='Number of queries for evaluating coverage')
parser.add_argument('--n_seed', type=int, default=1, help='Number of trials')
parser.add_argument('--seed_initial', type=int, default=0, help='Initial seed')
parser.add_argument('--alpha', type=float, default=0.1, help='alpha value corresponding to 1-alpha target coverage')
parser.add_argument('--K_vals', nargs='+', help='Values of K to try', required = True)
parser.add_argument('--muh', type=str, default='GP', help='Muh predictor.')
parser.add_argument('--dataset', type=str, default='airfoil', help='Dataset name')
## python run_JAW_FCS_active.py --dataset airfoil --n_steps 10 --K_vals 16
args = parser.parse_args()
n_train_initial = args.n_train_initial
n_val = args.n_val
n_steps = args.n_steps
n_queries_ann = args.n_queries_ann
n_queries_cov = args.n_queries_cov
n_seed = args.n_seed
alpha = args.alpha
K_vals = [int(K) for K in args.K_vals]
muh = args.muh
dataset = args.dataset
seed_initial = args.seed_initial
n_train_initial = 32 ## OVERRIDE
n_steps = 8
print("Running with n_seed ", str(n_seed), "n_steps ", str(n_steps), "n_queries_cov ", str(n_queries_cov))
if (muh == 'GP'):
kernel = DotProduct() + WhiteKernel()
muh_fun = GaussianProcessRegressor(kernel=kernel,random_state=0)
method_names = ['split', 'weighted_split', 'JAW-FCS', 'JAW-SCS', 'jackknife+']
# K_vals = [8, 12, 16, 24, 32, 48]
K_based_method_base_names = ['CV+_K', 'wCV_FCS_K', 'wCV_SCS_K', 'JAW_FCS_KLOO_rep_K', 'JAW_SCS_KLOO_rep_K', 'JAW_FCS_KLOO_det_K', 'JAW_SCS_KLOO_det_K']
for K in K_vals:
method_names = np.concatenate([method_names, [K_base_name + str(K) for K_base_name in K_based_method_base_names]])
results_by_seed = pd.DataFrame(columns = ['seed', 'step', 'dataset', 'muh_fun','method','coverage','width', 'MSE'])
results_all = pd.DataFrame(columns = ['seed','step', 'test_pt', 'dataset','muh_fun','method','coverage','width', 'muh_test', 'y_test'])
# # likelihood under training input distribution, p_X in paper (uniform distribution)
ptrain_fn = cal.KDE_density_estimates
# ptrain_fn_pointwise = lambda x: (1.0 / np.power(2, 13)) * np.ones([x.shape[0]])
# Read dataset
if (dataset == 'airfoil'):
airfoil = pd.read_csv(os.getcwd().removesuffix('bash_scripts') + 'AL_datasets/airfoil.txt', sep = '\t', header=None)
airfoil.columns = ["Frequency","Angle","Chord","Velocity","Suction","Sound"]
X_airfoil = airfoil.iloc[:, 0:5].values
X_airfoil[:, 0] = np.log(X_airfoil[:, 0])
X_airfoil[:, 4] = np.log(X_airfoil[:, 4])
Y_airfoil = airfoil.iloc[:, 5].values
n_airfoil = len(Y_airfoil)
elif (dataset == 'wine'):
winequality_red = pd.read_csv(os.getcwd().removesuffix('bash_scripts') + 'AL_datasets/wine/winequality-red.csv', sep=';')
X_wine = winequality_red.iloc[:, 0:11].values
Y_wine = winequality_red.iloc[:, 11].values
n_wine = len(Y_wine)
print("X_wine shape : ", X_wine.shape)
elif (dataset == 'wave'):
wave = pd.read_csv(os.getcwd().removesuffix('bash_scripts') + 'AL_datasets/WECs_DataSet/Adelaide_Data.csv', header = None)
X_wave = wave.iloc[0:2000, 0:48].values
Y_wave = wave.iloc[0:2000, 48].values
n_wave = len(Y_wave)
print("X_wave shape : ", X_wave.shape)
elif (dataset == 'superconduct'):
superconduct = pd.read_csv(os.getcwd().removesuffix('bash_scripts') + 'AL_datasets/superconduct/train.csv')
X_superconduct = superconduct.iloc[0:2000, 0:81].values
Y_superconduct = superconduct.iloc[0:2000, 81].values
n_superconduct = len(Y_superconduct)
print("X_superconduct shape : ", X_superconduct.shape)
elif (dataset == 'communities'):
# UCI Communities and Crime Data Set
# download from:
# http://archive.ics.uci.edu/ml/datasets/communities+and+crime
communities_data = np.loadtxt(os.getcwd().removesuffix('bash_scripts') + 'AL_datasets/communities/communities.data',delimiter=',',dtype=str)
# remove categorical predictors
communities_data = np.delete(communities_data,np.arange(5),1)
# remove predictors with missing values
communities_data = np.delete(communities_data,\
np.argwhere((communities_data=='?').sum(0)>0).reshape(-1),1)
communities_data = communities_data.astype(float)
X_communities = communities_data[:,:-1]
Y_communities = communities_data[:,-1]
n_communities = len(Y_communities)
print("X_communities shape : ", X_communities.shape)
X_all = eval('X_'+dataset)
all_inds = np.arange(eval('n_'+dataset))
jaw_fcs_active = cal.JAWFeedbackCovariateShiftActive(muh_fun, ptrain_fn, X_all)
# fset_s, sset_s, jaw_fset_s, jaw_fset_nn_s = [], [], [], [] # jaw_fset_s
# fcov_s, scov_s, jaw_fcov_s, jaw_fcov_nn_s = np.zeros([n_seed]), np.zeros([n_seed]), np.zeros([n_seed]), np.zeros([n_seed*n1])
# ytest_s, predtest_s = np.zeros([n_seed, n1]), np.zeros([n_seed, n1])
for seed in range(seed_initial, seed_initial + n_seed):
## Initial random data splits (train, validation, and pool)
## Note: Validation set won't change, train and pool will
np.random.seed(seed)
train_inds = list(np.random.choice(eval('n_'+dataset),n_train_initial,replace=False))
val_inds = list(np.random.choice(np.setdiff1d(np.arange(eval('n_'+dataset)),train_inds), n_val, replace=False))
pool_inds = list(np.setdiff1d(np.setdiff1d(np.arange(eval('n_'+dataset)),train_inds), val_inds))
## Initialize train and pool data for no sample splitting
Xtrain = eval('X_'+dataset)[train_inds]
ytrain = eval('Y_'+dataset)[train_inds]
Xpool = eval('X_'+dataset)[pool_inds]
ypool = eval('Y_'+dataset)[pool_inds]
## Create validation set (won't change)
Xval = eval('X_'+dataset)[val_inds]
yval = eval('Y_'+dataset)[val_inds]
## Sample splitting indices
idx_split = list(np.random.permutation(n_train_initial))
n_half_initial = int(np.floor(n_train_initial/4))
train_inds_split, cal_inds_split = list(idx_split[:n_half_initial]), list(idx_split[n_half_initial:])
## Note: Calibration set for split won't change
Xtrain_split = eval('X_'+dataset)[train_inds_split]
ytrain_split = eval('Y_'+dataset)[train_inds_split]
Xcal_split = eval('X_'+dataset)[cal_inds_split]
ycal_split = eval('Y_'+dataset)[cal_inds_split]
## Pool inds for split are initially the same but will be different later
pool_inds_split = list(np.setdiff1d(np.setdiff1d(np.arange(eval('n_'+dataset)),train_inds), val_inds))
## Initialize train and pool data for sample splitting (will change)
Xpool_split = eval('X_'+dataset)[pool_inds_split]
ypool_split = eval('Y_'+dataset)[pool_inds_split]
## Iterate through active learning steps
for step in range(n_steps):
####### ******* No sample splitting ********* ########
## Fit Gaussian process regression and use it to select queries from pool
gpr = muh_fun.fit(Xtrain, ytrain)
## Query point(s) for annotation from pool based on max predicted variance (max entropy)
y_preds_pool, std_preds_pool = gpr.predict(Xpool, return_std=True) ## Predictions on pool
var_preds_pool = std_preds_pool**2
var_preds_pool_norm = var_preds_pool / np.sum(var_preds_pool)
####NOTE: Changed this from max variance to sampling in proportion to variance
query_ann_inds = list(np.random.choice(pool_inds, n_queries_ann, replace=False, p=var_preds_pool_norm))
# query_ann_inds = list(np.argpartition(var_preds_pool,-n_queries_ann)[-n_queries_ann:])
## Query points for coverage evaluation from validation set by sampling in proportion to variance
y_preds_val, std_preds_val = gpr.predict(Xval, return_std=True)
var_preds_val = std_preds_val**2
var_preds_val_norm = var_preds_val / np.sum(var_preds_val)
query_cov_inds = list(np.random.choice(val_inds, n_queries_cov, p=var_preds_val_norm))
## Can view these as samples from the test distribution (in terms of coverage evaluation)
Xtest = eval('X_'+dataset)[query_cov_inds]
ytest = eval('Y_'+dataset)[query_cov_inds]
n_test = len(ytest)
ytest_preds = gpr.predict(Xtest, return_std=False)
## Prepare for next active learning iteration:
## Add point that was queried for annotation to the training data
## & remove queried point from pooled data
for q_ann in query_ann_inds:
train_inds.append(q_ann) ## Add queried samples to training set
pool_inds = list(set(all_inds) - set(train_inds))
## Update train and pool data for no sample splitting
Xtrain = eval('X_'+dataset)[train_inds]
ytrain = eval('Y_'+dataset)[train_inds]
Xpool = eval('X_'+dataset)[pool_inds]
ypool = eval('Y_'+dataset)[pool_inds]
MSE_full = np.mean((y_preds_val - yval)**2)
####### ******* Sample splitting ********* ########
## Fit Gaussian process regression and use it to select queries from pool
gpr_split = muh_fun.fit(Xtrain_split, ytrain_split)
## Query point(s) for annotation from pool based on max predicted variance (max entropy)
y_preds_pool_split, std_preds_pool_split = gpr_split.predict(Xpool_split, return_std=True) ## Predictions on pool
var_preds_pool_split = std_preds_pool_split**2
var_preds_pool_norm_split = var_preds_pool_split / np.sum(var_preds_pool_split)
####NOTE: Changed this from max variance to sampling in proportion to variance
query_ann_inds_split = list(np.random.choice(pool_inds_split, n_queries_ann, replace=False, p=var_preds_pool_norm_split))
# query_ann_inds_split = list(np.argpartition(var_preds_pool_split,-n_queries_ann)[-n_queries_ann:])
## Query points for coverage evaluation from validation set by sampling in proportion to variance
y_preds_val_split, std_preds_val_split = gpr_split.predict(Xval, return_std=True)
var_preds_val_split = std_preds_val_split**2
var_preds_val_norm_split = var_preds_val_split / np.sum(var_preds_val_split)
query_cov_inds_split = list(np.random.choice(val_inds, n_queries_cov, p=var_preds_val_norm_split))
## Can view these as samples from the test distribution (in terms of coverage evaluation)
Xtest_split = eval('X_'+dataset)[query_cov_inds_split]
ytest_split = eval('Y_'+dataset)[query_cov_inds_split]
ytest_preds_split = gpr_split.predict(Xtest_split, return_std=False)
## Prepare for next active learning iteration:
## Add point that was queried for annotation to the training data
## & remove queried point from pooled data
for q_ann in query_ann_inds_split:
train_inds_split.append(q_ann) ## Add queried samples to training set
pool_inds_split = list(set(all_inds) - set(train_inds_split))
# ## Update train and pool data for sample splitting
# idx_split = list(np.random.permutation(train_inds_split + cal_inds_split))
# n_half_ = int(np.floor(len(idx_split)/2))
# train_inds_split, cal_inds_split = list(idx_split[:n_half_]), list(idx_split[n_half_:])
# ## Note: Calibration set for split won't change
# Xtrain_split = eval('X_'+dataset)[train_inds_split]
# ytrain_split = eval('Y_'+dataset)[train_inds_split]
# Xcal_split = eval('X_'+dataset)[cal_inds_split]
# ycal_split = eval('Y_'+dataset)[cal_inds_split]
Xtrain_split = eval('X_'+dataset)[train_inds_split]
ytrain_split = eval('Y_'+dataset)[train_inds_split]
Xpool_split = eval('X_'+dataset)[pool_inds_split]
ypool_split = eval('Y_'+dataset)[pool_inds_split]
MSE_split = np.mean((y_preds_val_split - yval)**2)
# for method in ['no splitting', 'split']:
# if (method not in ['split', 'weighted_split']):
# results_by_seed.loc[len(results_by_seed)]=\
# [seed,step, dataset, muh, method,'NA_coverage','NA_width',MSE_full]
# else:
# results_by_seed.loc[len(results_by_seed)]=\
# [seed,step, dataset, muh, method,'NA_coverage','NA_width',MSE_split]
# construct confidence interval with JAW methods under feedback covariate shift
PIs = jaw_fcs_active.compute_PIs_active(Xtrain, ytrain, Xtest, ytest, Xtrain_split, Xcal_split, ytrain_split, ycal_split, Xtest_split, ytest_split, bandwidth = 1.0, alpha=alpha, K_vals = K_vals)
for method in method_names:
if (method not in ['split', 'weighted_split']):
coverage_by_seed = ((PIs[method]['lower'] <= ytest)&(PIs[method]['upper'] >= ytest)).mean()
muh_test_by_seed = ytest_preds.mean()
coverage_all = ((PIs[method]['lower'] <= ytest)&(PIs[method]['upper'] >= ytest))
muh_test_all = ytest_preds
ytest_method = ytest
MSE = MSE_full
else:
# print(len(PIs[method]))
# print(PIs[method]['lower'][0:10], ytest_n1_split[0:10], PIs[method]['upper'][0:10])
coverage_by_seed = ((PIs[method]['lower'] <= ytest_split)&(PIs[method]['upper'] >= ytest_split)).mean()
muh_test_by_seed = ytest_preds_split.mean()
coverage_all = ((PIs[method]['lower'] <= ytest_split)&(PIs[method]['upper'] >= ytest_split))
muh_test_all = ytest_preds_split
ytest_method = ytest_split
MSE = MSE_split
width_by_seed = (PIs[method]['upper'] - PIs[method]['lower']).median()
width_all = (PIs[method]['upper'] - PIs[method]['lower'])
# results_by_seed.loc[len(results_by_seed)]=\
# [seed,fitness_str,muh,method,coverage_by_seed,width_by_seed,muh_test_by_seed]
results_by_seed.loc[len(results_by_seed)]=\
[seed,step, dataset, muh, method,coverage_by_seed,width_by_seed,MSE]
# print(coverage_all)
# print(type(coverage_all))
# print(n1, len(coverage_all), len(muh_test_all))
for test_pt in range(0, n_test):
results_all.loc[len(results_all) + test_pt]=[seed,step, test_pt,dataset,muh,method,\
coverage_all[test_pt],width_all[test_pt],\
muh_test_all[test_pt], ytest_method[test_pt]]
if (((seed+1) % 5) == 0):
results_by_seed.to_csv(os.getcwd().removesuffix('bash_scripts') + 'results/'+ str(date.today()) + '_ActiveLearningExpts_' + dataset + '_' + muh + '_itrain' + str(n_train_initial) + '_steps' + str(step + 1) + '_nseed' + str(n_seed) + '_iseed' + str(seed_initial) + '_PIs_results_BySeed_v2.csv',index=False)
end_time = time.time()
print("Total time (minutes) : ", (end_time - start_time)/60)
results_by_seed.to_csv(os.getcwd().removesuffix('bash_scripts') + 'results/'+ str(date.today()) + '_ActiveLearningExpts_' + dataset + '_' + muh + '_itrain' + str(n_train_initial) + '_steps' + str(n_steps) + '_nseed' + str(n_seed) + '_iseed' + str(seed_initial) + '_PIs_results_BySeed_v2.csv',index=False)
results_all.to_csv(os.getcwd().removesuffix('bash_scripts') + 'results/'+ str(date.today()) + '_ActiveLearningExpts_' + dataset + '_' + muh + '_itrain' + str(n_train_initial) + '_steps' + str(n_steps) + '_nseed' + str(n_seed) + '_iseed' + str(seed_initial) + '_PIs_results_ALL_v2.csv',index=False)
# # if (n_trains[0] == 192):
# results_all.to_csv(str(date.today()) + '_' + fitness_str + '_' + muh + '_ntrain' + str(n_train) + '_lmbda' + str(lmbda) + '_seed' + str(seed + 1) + '_PIs_results_ALL.csv',index=False)