-
Notifications
You must be signed in to change notification settings - Fork 495
/
Copy pathtab_network.py
934 lines (831 loc) · 31.8 KB
/
tab_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
import torch
from torch.nn import Linear, BatchNorm1d, ReLU
import numpy as np
from pytorch_tabnet import sparsemax
def initialize_non_glu(module, input_dim, output_dim):
gain_value = np.sqrt((input_dim + output_dim) / np.sqrt(4 * input_dim))
torch.nn.init.xavier_normal_(module.weight, gain=gain_value)
# torch.nn.init.zeros_(module.bias)
return
def initialize_glu(module, input_dim, output_dim):
gain_value = np.sqrt((input_dim + output_dim) / np.sqrt(input_dim))
torch.nn.init.xavier_normal_(module.weight, gain=gain_value)
# torch.nn.init.zeros_(module.bias)
return
class GBN(torch.nn.Module):
"""
Ghost Batch Normalization
https://arxiv.org/abs/1705.08741
"""
def __init__(self, input_dim, virtual_batch_size=128, momentum=0.01):
super(GBN, self).__init__()
self.input_dim = input_dim
self.virtual_batch_size = virtual_batch_size
self.bn = BatchNorm1d(self.input_dim, momentum=momentum)
def forward(self, x):
chunks = x.chunk(int(np.ceil(x.shape[0] / self.virtual_batch_size)), 0)
res = [self.bn(x_) for x_ in chunks]
return torch.cat(res, dim=0)
class TabNetEncoder(torch.nn.Module):
def __init__(
self,
input_dim,
output_dim,
n_d=8,
n_a=8,
n_steps=3,
gamma=1.3,
n_independent=2,
n_shared=2,
epsilon=1e-15,
virtual_batch_size=128,
momentum=0.02,
mask_type="sparsemax",
group_attention_matrix=None,
):
"""
Defines main part of the TabNet network without the embedding layers.
Parameters
----------
input_dim : int
Number of features
output_dim : int or list of int for multi task classification
Dimension of network output
examples : one for regression, 2 for binary classification etc...
n_d : int
Dimension of the prediction layer (usually between 4 and 64)
n_a : int
Dimension of the attention layer (usually between 4 and 64)
n_steps : int
Number of successive steps in the network (usually between 3 and 10)
gamma : float
Float above 1, scaling factor for attention updates (usually between 1.0 to 2.0)
n_independent : int
Number of independent GLU layer in each GLU block (default 2)
n_shared : int
Number of independent GLU layer in each GLU block (default 2)
epsilon : float
Avoid log(0), this should be kept very low
virtual_batch_size : int
Batch size for Ghost Batch Normalization
momentum : float
Float value between 0 and 1 which will be used for momentum in all batch norm
mask_type : str
Either "sparsemax" or "entmax" : this is the masking function to use
group_attention_matrix : torch matrix
Matrix of size (n_groups, input_dim), m_ij = importance within group i of feature j
"""
super(TabNetEncoder, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.is_multi_task = isinstance(output_dim, list)
self.n_d = n_d
self.n_a = n_a
self.n_steps = n_steps
self.gamma = gamma
self.epsilon = epsilon
self.n_independent = n_independent
self.n_shared = n_shared
self.virtual_batch_size = virtual_batch_size
self.mask_type = mask_type
self.initial_bn = BatchNorm1d(self.input_dim, momentum=0.01)
self.group_attention_matrix = group_attention_matrix
if self.group_attention_matrix is None:
# no groups
self.group_attention_matrix = torch.eye(self.input_dim)
self.attention_dim = self.input_dim
else:
self.attention_dim = self.group_attention_matrix.shape[0]
if self.n_shared > 0:
shared_feat_transform = torch.nn.ModuleList()
for i in range(self.n_shared):
if i == 0:
shared_feat_transform.append(
Linear(self.input_dim, 2 * (n_d + n_a), bias=False)
)
else:
shared_feat_transform.append(
Linear(n_d + n_a, 2 * (n_d + n_a), bias=False)
)
else:
shared_feat_transform = None
self.initial_splitter = FeatTransformer(
self.input_dim,
n_d + n_a,
shared_feat_transform,
n_glu_independent=self.n_independent,
virtual_batch_size=self.virtual_batch_size,
momentum=momentum,
)
self.feat_transformers = torch.nn.ModuleList()
self.att_transformers = torch.nn.ModuleList()
for step in range(n_steps):
transformer = FeatTransformer(
self.input_dim,
n_d + n_a,
shared_feat_transform,
n_glu_independent=self.n_independent,
virtual_batch_size=self.virtual_batch_size,
momentum=momentum,
)
attention = AttentiveTransformer(
n_a,
self.attention_dim,
group_matrix=group_attention_matrix,
virtual_batch_size=self.virtual_batch_size,
momentum=momentum,
mask_type=self.mask_type,
)
self.feat_transformers.append(transformer)
self.att_transformers.append(attention)
def forward(self, x, prior=None):
x = self.initial_bn(x)
bs = x.shape[0] # batch size
if prior is None:
prior = torch.ones((bs, self.attention_dim)).to(x.device)
M_loss = 0
att = self.initial_splitter(x)[:, self.n_d :]
steps_output = []
for step in range(self.n_steps):
M = self.att_transformers[step](prior, att)
M_loss += torch.mean(
torch.sum(torch.mul(M, torch.log(M + self.epsilon)), dim=1)
)
# update prior
prior = torch.mul(self.gamma - M, prior)
# output
M_feature_level = torch.matmul(M, self.group_attention_matrix)
masked_x = torch.mul(M_feature_level, x)
out = self.feat_transformers[step](masked_x)
d = ReLU()(out[:, : self.n_d])
steps_output.append(d)
# update attention
att = out[:, self.n_d :]
M_loss /= self.n_steps
return steps_output, M_loss
def forward_masks(self, x):
x = self.initial_bn(x)
bs = x.shape[0] # batch size
prior = torch.ones((bs, self.attention_dim)).to(x.device)
M_explain = torch.zeros(x.shape).to(x.device)
att = self.initial_splitter(x)[:, self.n_d :]
masks = {}
for step in range(self.n_steps):
M = self.att_transformers[step](prior, att)
M_feature_level = torch.matmul(M, self.group_attention_matrix)
masks[step] = M_feature_level
# update prior
prior = torch.mul(self.gamma - M, prior)
# output
masked_x = torch.mul(M_feature_level, x)
out = self.feat_transformers[step](masked_x)
d = ReLU()(out[:, : self.n_d])
# explain
step_importance = torch.sum(d, dim=1)
M_explain += torch.mul(M_feature_level, step_importance.unsqueeze(dim=1))
# update attention
att = out[:, self.n_d :]
return M_explain, masks
class TabNetDecoder(torch.nn.Module):
def __init__(
self,
input_dim,
n_d=8,
n_steps=3,
n_independent=1,
n_shared=1,
virtual_batch_size=128,
momentum=0.02,
):
"""
Defines main part of the TabNet network without the embedding layers.
Parameters
----------
input_dim : int
Number of features
output_dim : int or list of int for multi task classification
Dimension of network output
examples : one for regression, 2 for binary classification etc...
n_d : int
Dimension of the prediction layer (usually between 4 and 64)
n_steps : int
Number of successive steps in the network (usually between 3 and 10)
gamma : float
Float above 1, scaling factor for attention updates (usually between 1.0 to 2.0)
n_independent : int
Number of independent GLU layer in each GLU block (default 1)
n_shared : int
Number of independent GLU layer in each GLU block (default 1)
virtual_batch_size : int
Batch size for Ghost Batch Normalization
momentum : float
Float value between 0 and 1 which will be used for momentum in all batch norm
"""
super(TabNetDecoder, self).__init__()
self.input_dim = input_dim
self.n_d = n_d
self.n_steps = n_steps
self.n_independent = n_independent
self.n_shared = n_shared
self.virtual_batch_size = virtual_batch_size
self.feat_transformers = torch.nn.ModuleList()
if self.n_shared > 0:
shared_feat_transform = torch.nn.ModuleList()
for i in range(self.n_shared):
shared_feat_transform.append(Linear(n_d, 2 * n_d, bias=False))
else:
shared_feat_transform = None
for step in range(n_steps):
transformer = FeatTransformer(
n_d,
n_d,
shared_feat_transform,
n_glu_independent=self.n_independent,
virtual_batch_size=self.virtual_batch_size,
momentum=momentum,
)
self.feat_transformers.append(transformer)
self.reconstruction_layer = Linear(n_d, self.input_dim, bias=False)
initialize_non_glu(self.reconstruction_layer, n_d, self.input_dim)
def forward(self, steps_output):
res = 0
for step_nb, step_output in enumerate(steps_output):
x = self.feat_transformers[step_nb](step_output)
res = torch.add(res, x)
res = self.reconstruction_layer(res)
return res
class TabNetPretraining(torch.nn.Module):
def __init__(
self,
input_dim,
pretraining_ratio=0.2,
n_d=8,
n_a=8,
n_steps=3,
gamma=1.3,
cat_idxs=[],
cat_dims=[],
cat_emb_dim=1,
n_independent=2,
n_shared=2,
epsilon=1e-15,
virtual_batch_size=128,
momentum=0.02,
mask_type="sparsemax",
n_shared_decoder=1,
n_indep_decoder=1,
group_attention_matrix=None,
):
super(TabNetPretraining, self).__init__()
self.cat_idxs = cat_idxs or []
self.cat_dims = cat_dims or []
self.cat_emb_dim = cat_emb_dim
self.input_dim = input_dim
self.n_d = n_d
self.n_a = n_a
self.n_steps = n_steps
self.gamma = gamma
self.epsilon = epsilon
self.n_independent = n_independent
self.n_shared = n_shared
self.mask_type = mask_type
self.pretraining_ratio = pretraining_ratio
self.n_shared_decoder = n_shared_decoder
self.n_indep_decoder = n_indep_decoder
if self.n_steps <= 0:
raise ValueError("n_steps should be a positive integer.")
if self.n_independent == 0 and self.n_shared == 0:
raise ValueError("n_shared and n_independent can't be both zero.")
self.virtual_batch_size = virtual_batch_size
self.embedder = EmbeddingGenerator(input_dim,
cat_dims,
cat_idxs,
cat_emb_dim,
group_attention_matrix)
self.post_embed_dim = self.embedder.post_embed_dim
self.masker = RandomObfuscator(self.pretraining_ratio,
group_matrix=self.embedder.embedding_group_matrix)
self.encoder = TabNetEncoder(
input_dim=self.post_embed_dim,
output_dim=self.post_embed_dim,
n_d=n_d,
n_a=n_a,
n_steps=n_steps,
gamma=gamma,
n_independent=n_independent,
n_shared=n_shared,
epsilon=epsilon,
virtual_batch_size=virtual_batch_size,
momentum=momentum,
mask_type=mask_type,
group_attention_matrix=self.embedder.embedding_group_matrix,
)
self.decoder = TabNetDecoder(
self.post_embed_dim,
n_d=n_d,
n_steps=n_steps,
n_independent=self.n_indep_decoder,
n_shared=self.n_shared_decoder,
virtual_batch_size=virtual_batch_size,
momentum=momentum,
)
def forward(self, x):
"""
Returns: res, embedded_x, obf_vars
res : output of reconstruction
embedded_x : embedded input
obf_vars : which variable where obfuscated
"""
embedded_x = self.embedder(x)
if self.training:
masked_x, obfuscated_groups, obfuscated_vars = self.masker(embedded_x)
# set prior of encoder with obfuscated groups
prior = 1 - obfuscated_groups
steps_out, _ = self.encoder(masked_x, prior=prior)
res = self.decoder(steps_out)
return res, embedded_x, obfuscated_vars
else:
steps_out, _ = self.encoder(embedded_x)
res = self.decoder(steps_out)
return res, embedded_x, torch.ones(embedded_x.shape).to(x.device)
def forward_masks(self, x):
embedded_x = self.embedder(x)
return self.encoder.forward_masks(embedded_x)
class TabNetNoEmbeddings(torch.nn.Module):
def __init__(
self,
input_dim,
output_dim,
n_d=8,
n_a=8,
n_steps=3,
gamma=1.3,
n_independent=2,
n_shared=2,
epsilon=1e-15,
virtual_batch_size=128,
momentum=0.02,
mask_type="sparsemax",
group_attention_matrix=None,
):
"""
Defines main part of the TabNet network without the embedding layers.
Parameters
----------
input_dim : int
Number of features
output_dim : int or list of int for multi task classification
Dimension of network output
examples : one for regression, 2 for binary classification etc...
n_d : int
Dimension of the prediction layer (usually between 4 and 64)
n_a : int
Dimension of the attention layer (usually between 4 and 64)
n_steps : int
Number of successive steps in the network (usually between 3 and 10)
gamma : float
Float above 1, scaling factor for attention updates (usually between 1.0 to 2.0)
n_independent : int
Number of independent GLU layer in each GLU block (default 2)
n_shared : int
Number of independent GLU layer in each GLU block (default 2)
epsilon : float
Avoid log(0), this should be kept very low
virtual_batch_size : int
Batch size for Ghost Batch Normalization
momentum : float
Float value between 0 and 1 which will be used for momentum in all batch norm
mask_type : str
Either "sparsemax" or "entmax" : this is the masking function to use
group_attention_matrix : torch matrix
Matrix of size (n_groups, input_dim), m_ij = importance within group i of feature j
"""
super(TabNetNoEmbeddings, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.is_multi_task = isinstance(output_dim, list)
self.n_d = n_d
self.n_a = n_a
self.n_steps = n_steps
self.gamma = gamma
self.epsilon = epsilon
self.n_independent = n_independent
self.n_shared = n_shared
self.virtual_batch_size = virtual_batch_size
self.mask_type = mask_type
self.initial_bn = BatchNorm1d(self.input_dim, momentum=0.01)
self.encoder = TabNetEncoder(
input_dim=input_dim,
output_dim=output_dim,
n_d=n_d,
n_a=n_a,
n_steps=n_steps,
gamma=gamma,
n_independent=n_independent,
n_shared=n_shared,
epsilon=epsilon,
virtual_batch_size=virtual_batch_size,
momentum=momentum,
mask_type=mask_type,
group_attention_matrix=group_attention_matrix
)
if self.is_multi_task:
self.multi_task_mappings = torch.nn.ModuleList()
for task_dim in output_dim:
task_mapping = Linear(n_d, task_dim, bias=False)
initialize_non_glu(task_mapping, n_d, task_dim)
self.multi_task_mappings.append(task_mapping)
else:
self.final_mapping = Linear(n_d, output_dim, bias=False)
initialize_non_glu(self.final_mapping, n_d, output_dim)
def forward(self, x):
res = 0
steps_output, M_loss = self.encoder(x)
res = torch.sum(torch.stack(steps_output, dim=0), dim=0)
if self.is_multi_task:
# Result will be in list format
out = []
for task_mapping in self.multi_task_mappings:
out.append(task_mapping(res))
else:
out = self.final_mapping(res)
return out, M_loss
def forward_masks(self, x):
return self.encoder.forward_masks(x)
class TabNet(torch.nn.Module):
def __init__(
self,
input_dim,
output_dim,
n_d=8,
n_a=8,
n_steps=3,
gamma=1.3,
cat_idxs=[],
cat_dims=[],
cat_emb_dim=1,
n_independent=2,
n_shared=2,
epsilon=1e-15,
virtual_batch_size=128,
momentum=0.02,
mask_type="sparsemax",
group_attention_matrix=[],
):
"""
Defines TabNet network
Parameters
----------
input_dim : int
Initial number of features
output_dim : int
Dimension of network output
examples : one for regression, 2 for binary classification etc...
n_d : int
Dimension of the prediction layer (usually between 4 and 64)
n_a : int
Dimension of the attention layer (usually between 4 and 64)
n_steps : int
Number of successive steps in the network (usually between 3 and 10)
gamma : float
Float above 1, scaling factor for attention updates (usually between 1.0 to 2.0)
cat_idxs : list of int
Index of each categorical column in the dataset
cat_dims : list of int
Number of categories in each categorical column
cat_emb_dim : int or list of int
Size of the embedding of categorical features
if int, all categorical features will have same embedding size
if list of int, every corresponding feature will have specific size
n_independent : int
Number of independent GLU layer in each GLU block (default 2)
n_shared : int
Number of independent GLU layer in each GLU block (default 2)
epsilon : float
Avoid log(0), this should be kept very low
virtual_batch_size : int
Batch size for Ghost Batch Normalization
momentum : float
Float value between 0 and 1 which will be used for momentum in all batch norm
mask_type : str
Either "sparsemax" or "entmax" : this is the masking function to use
group_attention_matrix : torch matrix
Matrix of size (n_groups, input_dim), m_ij = importance within group i of feature j
"""
super(TabNet, self).__init__()
self.cat_idxs = cat_idxs or []
self.cat_dims = cat_dims or []
self.cat_emb_dim = cat_emb_dim
self.input_dim = input_dim
self.output_dim = output_dim
self.n_d = n_d
self.n_a = n_a
self.n_steps = n_steps
self.gamma = gamma
self.epsilon = epsilon
self.n_independent = n_independent
self.n_shared = n_shared
self.mask_type = mask_type
if self.n_steps <= 0:
raise ValueError("n_steps should be a positive integer.")
if self.n_independent == 0 and self.n_shared == 0:
raise ValueError("n_shared and n_independent can't be both zero.")
self.virtual_batch_size = virtual_batch_size
self.embedder = EmbeddingGenerator(input_dim,
cat_dims,
cat_idxs,
cat_emb_dim,
group_attention_matrix)
self.post_embed_dim = self.embedder.post_embed_dim
self.tabnet = TabNetNoEmbeddings(
self.post_embed_dim,
output_dim,
n_d,
n_a,
n_steps,
gamma,
n_independent,
n_shared,
epsilon,
virtual_batch_size,
momentum,
mask_type,
self.embedder.embedding_group_matrix
)
def forward(self, x):
x = self.embedder(x)
return self.tabnet(x)
def forward_masks(self, x):
x = self.embedder(x)
return self.tabnet.forward_masks(x)
class AttentiveTransformer(torch.nn.Module):
def __init__(
self,
input_dim,
group_dim,
group_matrix,
virtual_batch_size=128,
momentum=0.02,
mask_type="sparsemax",
):
"""
Initialize an attention transformer.
Parameters
----------
input_dim : int
Input size
group_dim : int
Number of groups for features
virtual_batch_size : int
Batch size for Ghost Batch Normalization
momentum : float
Float value between 0 and 1 which will be used for momentum in batch norm
mask_type : str
Either "sparsemax" or "entmax" : this is the masking function to use
"""
super(AttentiveTransformer, self).__init__()
self.fc = Linear(input_dim, group_dim, bias=False)
initialize_non_glu(self.fc, input_dim, group_dim)
self.bn = GBN(
group_dim, virtual_batch_size=virtual_batch_size, momentum=momentum
)
if mask_type == "sparsemax":
# Sparsemax
self.selector = sparsemax.Sparsemax(dim=-1)
elif mask_type == "entmax":
# Entmax
self.selector = sparsemax.Entmax15(dim=-1)
else:
raise NotImplementedError(
"Please choose either sparsemax" + "or entmax as masktype"
)
def forward(self, priors, processed_feat):
x = self.fc(processed_feat)
x = self.bn(x)
x = torch.mul(x, priors)
x = self.selector(x)
return x
class FeatTransformer(torch.nn.Module):
def __init__(
self,
input_dim,
output_dim,
shared_layers,
n_glu_independent,
virtual_batch_size=128,
momentum=0.02,
):
super(FeatTransformer, self).__init__()
"""
Initialize a feature transformer.
Parameters
----------
input_dim : int
Input size
output_dim : int
Output_size
shared_layers : torch.nn.ModuleList
The shared block that should be common to every step
n_glu_independent : int
Number of independent GLU layers
virtual_batch_size : int
Batch size for Ghost Batch Normalization within GLU block(s)
momentum : float
Float value between 0 and 1 which will be used for momentum in batch norm
"""
params = {
"n_glu": n_glu_independent,
"virtual_batch_size": virtual_batch_size,
"momentum": momentum,
}
if shared_layers is None:
# no shared layers
self.shared = torch.nn.Identity()
is_first = True
else:
self.shared = GLU_Block(
input_dim,
output_dim,
first=True,
shared_layers=shared_layers,
n_glu=len(shared_layers),
virtual_batch_size=virtual_batch_size,
momentum=momentum,
)
is_first = False
if n_glu_independent == 0:
# no independent layers
self.specifics = torch.nn.Identity()
else:
spec_input_dim = input_dim if is_first else output_dim
self.specifics = GLU_Block(
spec_input_dim, output_dim, first=is_first, **params
)
def forward(self, x):
x = self.shared(x)
x = self.specifics(x)
return x
class GLU_Block(torch.nn.Module):
"""
Independent GLU block, specific to each step
"""
def __init__(
self,
input_dim,
output_dim,
n_glu=2,
first=False,
shared_layers=None,
virtual_batch_size=128,
momentum=0.02,
):
super(GLU_Block, self).__init__()
self.first = first
self.shared_layers = shared_layers
self.n_glu = n_glu
self.glu_layers = torch.nn.ModuleList()
params = {"virtual_batch_size": virtual_batch_size, "momentum": momentum}
fc = shared_layers[0] if shared_layers else None
self.glu_layers.append(GLU_Layer(input_dim, output_dim, fc=fc, **params))
for glu_id in range(1, self.n_glu):
fc = shared_layers[glu_id] if shared_layers else None
self.glu_layers.append(GLU_Layer(output_dim, output_dim, fc=fc, **params))
def forward(self, x):
scale = torch.sqrt(torch.FloatTensor([0.5]).to(x.device))
if self.first: # the first layer of the block has no scale multiplication
x = self.glu_layers[0](x)
layers_left = range(1, self.n_glu)
else:
layers_left = range(self.n_glu)
for glu_id in layers_left:
x = torch.add(x, self.glu_layers[glu_id](x))
x = x * scale
return x
class GLU_Layer(torch.nn.Module):
def __init__(
self, input_dim, output_dim, fc=None, virtual_batch_size=128, momentum=0.02
):
super(GLU_Layer, self).__init__()
self.output_dim = output_dim
if fc:
self.fc = fc
else:
self.fc = Linear(input_dim, 2 * output_dim, bias=False)
initialize_glu(self.fc, input_dim, 2 * output_dim)
self.bn = GBN(
2 * output_dim, virtual_batch_size=virtual_batch_size, momentum=momentum
)
def forward(self, x):
x = self.fc(x)
x = self.bn(x)
out = torch.mul(x[:, : self.output_dim], torch.sigmoid(x[:, self.output_dim :]))
return out
class EmbeddingGenerator(torch.nn.Module):
"""
Classical embeddings generator
"""
def __init__(self, input_dim, cat_dims, cat_idxs, cat_emb_dims, group_matrix):
"""This is an embedding module for an entire set of features
Parameters
----------
input_dim : int
Number of features coming as input (number of columns)
cat_dims : list of int
Number of modalities for each categorial features
If the list is empty, no embeddings will be done
cat_idxs : list of int
Positional index for each categorical features in inputs
cat_emb_dim : list of int
Embedding dimension for each categorical features
If int, the same embedding dimension will be used for all categorical features
group_matrix : torch matrix
Original group matrix before embeddings
"""
super(EmbeddingGenerator, self).__init__()
if cat_dims == [] and cat_idxs == []:
self.skip_embedding = True
self.post_embed_dim = input_dim
self.embedding_group_matrix = group_matrix.to(group_matrix.device)
return
else:
self.skip_embedding = False
self.post_embed_dim = int(input_dim + np.sum(cat_emb_dims) - len(cat_emb_dims))
self.embeddings = torch.nn.ModuleList()
for cat_dim, emb_dim in zip(cat_dims, cat_emb_dims):
self.embeddings.append(torch.nn.Embedding(cat_dim, emb_dim))
# record continuous indices
self.continuous_idx = torch.ones(input_dim, dtype=torch.bool)
self.continuous_idx[cat_idxs] = 0
# update group matrix
n_groups = group_matrix.shape[0]
self.embedding_group_matrix = torch.empty((n_groups, self.post_embed_dim),
device=group_matrix.device)
for group_idx in range(n_groups):
post_emb_idx = 0
cat_feat_counter = 0
for init_feat_idx in range(input_dim):
if self.continuous_idx[init_feat_idx] == 1:
# this means that no embedding is applied to this column
self.embedding_group_matrix[group_idx, post_emb_idx] = group_matrix[group_idx, init_feat_idx] # noqa
post_emb_idx += 1
else:
# this is a categorical feature which creates multiple embeddings
n_embeddings = cat_emb_dims[cat_feat_counter]
self.embedding_group_matrix[group_idx, post_emb_idx:post_emb_idx+n_embeddings] = group_matrix[group_idx, init_feat_idx] / n_embeddings # noqa
post_emb_idx += n_embeddings
cat_feat_counter += 1
def forward(self, x):
"""
Apply embeddings to inputs
Inputs should be (batch_size, input_dim)
Outputs will be of size (batch_size, self.post_embed_dim)
"""
if self.skip_embedding:
# no embeddings required
return x
cols = []
cat_feat_counter = 0
for feat_init_idx, is_continuous in enumerate(self.continuous_idx):
# Enumerate through continuous idx boolean mask to apply embeddings
if is_continuous:
cols.append(x[:, feat_init_idx].float().view(-1, 1))
else:
cols.append(
self.embeddings[cat_feat_counter](x[:, feat_init_idx].long())
)
cat_feat_counter += 1
# concat
post_embeddings = torch.cat(cols, dim=1)
return post_embeddings
class RandomObfuscator(torch.nn.Module):
"""
Create and applies obfuscation masks.
The obfuscation is done at group level to match attention.
"""
def __init__(self, pretraining_ratio, group_matrix):
"""
This create random obfuscation for self suppervised pretraining
Parameters
----------
pretraining_ratio : float
Ratio of feature to randomly discard for reconstruction
"""
super(RandomObfuscator, self).__init__()
self.pretraining_ratio = pretraining_ratio
# group matrix is set to boolean here to pass all posssible information
self.group_matrix = (group_matrix > 0) + 0.
self.num_groups = group_matrix.shape[0]
def forward(self, x):
"""
Generate random obfuscation mask.
Returns
-------
masked input and obfuscated variables.
"""
bs = x.shape[0]
obfuscated_groups = torch.bernoulli(
self.pretraining_ratio * torch.ones((bs, self.num_groups), device=x.device)
)
obfuscated_vars = torch.matmul(obfuscated_groups, self.group_matrix)
masked_input = torch.mul(1 - obfuscated_vars, x)
return masked_input, obfuscated_groups, obfuscated_vars