-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathrun_sl.py
75 lines (66 loc) · 2.73 KB
/
run_sl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import anglepy
import anglepy.ndict as ndict
from anglepy.models import GPUVAE_YZ_X
import sys
# Load MNIST data
dataset = sys.argv[1]
if dataset == 'mnist':
import anglepy.data.mnist as mnist
_, train_y, _, _, test_x, test_y = mnist.load_numpy(size=28, binarize_y=False)
# Compute prior probabilities per class
train_y = mnist.binarize_labels(train_y)
prior_y = train_y.mean(axis=1).reshape((10,1))
# Create model
n_x = 28*28
n_y = 10
n_z = 50
n_hidden = 500,500
updates = None
model = GPUVAE_YZ_X(updates, n_x, n_y, n_hidden, n_z, n_hidden, 'softplus', 'softplus', type_px='bernoulli', type_qz='gaussianmarg', type_pz='gaussianmarg', prior_sd=1, uniform_y=True)
# Load parameters
dir = 'models/mnist_yz_x_50-500-500/'
ndict.set_value(model.v, ndict.loadz(dir+'v_best.ndict.tar.gz'))
ndict.set_value(model.w, ndict.loadz(dir+'w_best.ndict.tar.gz'))
else:
raise Exception("Unknown dataset")
# Make predictions on test set
def get_lowerbound():
lb = np.zeros((n_y,test_x.shape[1]))
for _class in range(n_y):
y = np.zeros((n_y,test_x.shape[1]))
y[_class,:] = 1
_lb = model.eval({'x': test_x.astype(np.float32), 'y':y.astype(np.float32)}, {})
lb[_class,:] = _lb
return lb
def get_predictions(n_samples=1000, show_convergence=True):
px = 0
def get_posterior(likelihood, prior):
posterior = (likelihood * prior)
posterior /= posterior.sum(axis=0, keepdims=True)
return posterior
for i in range(n_samples):
px += np.exp(get_lowerbound())
if show_convergence:
posterior = get_posterior(px / (i+1), prior_y)
pred = np.argmax(posterior, axis=0)
error_perc = 100* (pred != test_y).sum() / (1.*test_y.shape[0])
print 'samples:', i, ', test-set error (%):', error_perc
posterior = get_posterior(px / n_samples, prior_y)
return np.argmax(posterior, axis=0)
n_samples = 1000
print 'Computing class posteriors using a marginal likelihood estimate with importance sampling using ', n_samples, ' samples.'
print 'This is slow, but could be sped up significantly by fitting a classifier to match the posteriors (of the generative model) in the training set.'
print 'For MNIST, this should converge to ~ 0.96 % error.'
result = get_predictions(n_samples)
print 'Done.'
print 'Result (test-set error %): ', result
'''
# Compare predictions with truth
print 'Predicting with 1, 10, 100 and 1000 samples'
for n_samples in [1,10,100,1000]:
print 'Computing predictions with n_samples = ', n_samples
predictions = get_predictions(n_samples)
error_perc = 100* (predictions != test_y).sum() / (1.*test_y.shape[0])
print 'Error rate is ', error_perc, '%'
'''