-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlearn-corpus
executable file
·349 lines (282 loc) · 11.4 KB
/
learn-corpus
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#!/usr/bin/python
# -*- coding: utf-8 -*-
import time
import os
import sys
HERE = os.path.dirname(__file__)
sys.path.append(HERE)
import argparse
import charmodel
import random
import json
import numpy as np
import errno
import arguments
import language
from meta import save_opinions
VALIDATION_ABORT_THRESHOLD = 6.0
def full_entropy_matrix(net, texts, ignore_start):
entropies_cache = {}
for tid, text in texts.items():
entropies = net.test(text, ignore_start, 0)
entropies_cache[tid] = entropies
return entropies_cache
def get_problem_and_control_sets(entropy_cache, problems):
classified_tids = set()
for records in problems.values():
classified_tids.update(x[2] for x in records)
control_tids = set(x for x in entropy_cache
if x not in classified_tids)
print ("found %d classified texts and %d control (%d total)" %
(len(classified_tids), len(control_tids), len(entropy_cache)))
return classified_tids, control_tids
def entropies_to_opinions(entropy_cache, problems, text_len_lut):
# Get the cross-entropy between all subnets against the texts of
# each problem. Because texts are often in more than one problem,
# we keep a cache (this is sort-of expensive).
affinities = {}
names = {}
all_control_texts = {}
all_control_models = {}
all_text_lengths = {}
classified_tids, control_tids = \
get_problem_and_control_sets(entropy_cache, problems)
control_text_lut = {}
control_model_lut = {k: 0 for k in classified_tids}
control_n = max(1.0, len(control_tids))
for tid in classified_tids:
entropies = entropy_cache[tid]
control_text_lut[tid] = (sum(entropies[k] for k in control_tids) /
control_n)
for tid in control_tids:
entropies = entropy_cache[tid]
for k in classified_tids:
control_model_lut[k] += entropies[k]
for k in classified_tids:
control_model_lut[k] /= control_n
for pid, records in problems.items():
names[pid], _, text_ids = zip(*records)
entropy_matrix = []
control_texts = []
control_models = []
lengths = []
for fn, ffn, tid in records:
entropies = entropy_cache[tid]
local_entropies = [entropies[x] for x in text_ids]
entropy_matrix.append(local_entropies)
# control_texts is list of lists, the right shape for
# column-oriented subtraction.
control_texts.append([control_text_lut[tid]])
control_models.append(control_model_lut[tid])
lengths.append(text_len_lut[tid])
affinities[pid] = np.array(entropy_matrix)
all_control_texts[pid] = np.array(control_texts)
all_control_models[pid] = np.array(control_models)
all_text_lengths[pid] = lengths
return {
'affinities': affinities,
'names': names,
'control_texts': all_control_texts,
'control_models': all_control_models,
'text_lengths': all_text_lengths
}
def opine(net, texts, problems, ignore_start):
print "beginning opine"
start = time.time()
entropy_cache = full_entropy_matrix(net, texts, ignore_start)
print "got raw entropies in %d:%02d" % divmod(time.time() - start, 60)
text_len_lut = {k: len(v) for k, v in texts.iteritems()}
return entropies_to_opinions(entropy_cache, problems, text_len_lut)
def calc_ventropy_change(ventropies, prev_ventropies):
ve_sum = 0.0
ve_sum2 = 0.0
ve_diff_sum = 0.0
ve_diff_sum2 = 0.0
for prev, e in zip(prev_ventropies, ventropies):
diff = prev - e
ve_diff_sum += diff
ve_diff_sum2 += diff * diff
ve_sum += e
ve_sum2 += e * e
ve_scale = 1.0 / len(ventropies)
ve_mean = ve_sum * ve_scale
ve_stddev = (ve_sum2 * ve_scale - ve_mean * ve_mean) ** 0.5
ve_diff_mean = ve_diff_sum * ve_scale
ve_diff_stddev = (ve_diff_sum2 * ve_scale -
ve_diff_mean * ve_diff_mean) ** 0.5
return (ve_mean, ve_stddev, ve_diff_mean, ve_diff_stddev)
def train(net, texts, leakage, epochs, leakage_decay,
learn_rate_decay, ignore_start, validation_text,
validation_reverse_length, opinion_args,
net_filename, confab_n=3, confab_len=79,
confab_interval=0, confab_caps_marker=None):
prev_ventropies = net.test(validation_text, ignore_start, 1)
v_history = []
for name in net.class_names[:confab_n]:
print name,
net.start_confab(confab_interval, confab_n, confab_len,
confab_caps_marker)
for i in range(epochs):
if not confab_interval:
print ("starting epoch %d with learn-rate %s, "
"leakage %s" % (i + 1, net.learn_rate, leakage))
start = time.time()
for name, text in texts.items():
net.train(text, name, leakage=leakage,
ignore_start=ignore_start)
if net_filename:
net.save(net_filename)
middle = time.time()
if not confab_interval:
print "training took %d:%02d" % divmod(middle - start, 60)
ventropies = net.test(validation_text, ignore_start, 1)
vstats = calc_ventropy_change(ventropies, prev_ventropies)
prev_ventropies = ventropies
print ("validation entropy %.3f±%.3f diff % .3f±%.3f" % vstats)
end = time.time()
if not confab_interval:
print "validation took %d:%02d" % divmod(end - middle, 60)
if vstats[0] > VALIDATION_ABORT_THRESHOLD:
raise RuntimeError('Validation error %.3f > %.3f; aborting' %
(vstats[0], VALIDATION_ABORT_THRESHOLD))
if validation_reverse_length:
v_history.append(vstats[2] < 0.0)
v_history = v_history[-validation_reverse_length:]
if all(v_history):
print ("stopping because validation has been getting worse "
"for %d epochs" % validation_reverse_length)
return
if opinion_args is not None:
interval, opinion_dest, problems = opinion_args
if (i + 1) % interval == 0:
print "starting periodic opinion"
start = time.time()
fn = opinion_dest % i
opinion = opine(net, texts, problems, ignore_start)
save_opinions(fn, problems=problems, **opinion)
print "opinion took %d:%02d" % divmod(time.time() - start, 60)
leakage *= leakage_decay
net.learn_rate *= learn_rate_decay
net.stop_confab()
def get_net_and_corpus(srcdir, controldir, control_n, lang,
reverse, validation_dir, word_df_threshold,
net_kwargs):
print srcdir
texts, problems = language.load_corpus(srcdir, lang)
if control_n and controldir:
control_texts, _ = language.load_control_texts(controldir, lang)
if len(control_texts) > control_n:
# sort, to avoid hashing indeterminacy
c_items = sorted(control_texts.items())
random.shuffle(c_items)
control_texts = dict(c_items[:control_n])
texts.update(control_texts)
print "using %d control texts; wanted %d" % (len(control_texts),
control_n)
if word_df_threshold:
language.word_df_filter(texts, word_df_threshold)
# remap into net enumeration encoding
alphabet = charmodel.Alphabet(''.join(texts.values()), ignore_case=False,
threshold=1e-10)
print >>sys.stderr, "alphabet is %s" % (alphabet.alphabet,)
remapped = {}
for k, v in texts.iteritems():
t = alphabet.encode_text(v)
if reverse:
t = ''.join(reversed(t))
remapped[k] = t
if validation_dir:
# validation text doesn't go in texts.
v_texts, _ = language.load_control_texts(validation_dir, lang)
v_text = alphabet.encode_text('\n'.join(v_texts.values()))
if reverse:
v_text = ''.join(reversed(v_text))
textnames = sorted(texts.keys())
metadata = json.dumps({
'alphabet': alphabet.alphabet,
'collapse_chars': alphabet.collapsed_chars,
'version': 2,
'class_names': textnames,
'case_insensitive': False,
'utf8': True,
'collapse_space': False,
'reverse': reverse,
}, sort_keys=True)
net = charmodel.Net(alphabet, textnames, metadata=metadata, **net_kwargs)
return net, remapped, problems, v_text
def main():
parser = argparse.ArgumentParser()
rnn_args = parser.add_argument_group('RNN arguments')
arguments.add_common_args(parser.add_argument)
arguments.add_rnn_args(rnn_args.add_argument)
args = parser.parse_args()
if args.enable_fp_exceptions:
charmodel.enable_fp_exceptions()
if args.rng_seed != -1:
random.seed(args.rng_seed)
if args.save is None:
if args.output_dir is None:
print "I don't know where to write anything!"
sys.exit(1)
args.save = os.path.join(args.output_dir,
'%s-affinities.pickle' % args.lang)
try:
os.makedirs(args.output_dir)
print "made output directory %r" % args.output_dir
except OSError, e:
if e.errno != errno.EEXIST:
raise
if args.epochs is None:
if args.stop_on_validation_reverse:
args.epochs = 100
else:
args.epochs = 1
net_kwargs = {}
train_kwargs = {}
for k, v in vars(args).items():
if k in ("bptt_depth",
"hidden_size",
"rng_seed",
"log_file",
"verbose",
"learn_rate",
"temporal_pgm_dump",
"periodic_pgm_dump",
"periodic_pgm_period",
"basename",
"activation",
"learning_method",
"batch_size",
"filename",
"presynaptic_noise",
"init_method",
):
net_kwargs[k] = v
if (v is not None and
k in ("confab_interval",
"confab_n",
"confab_len",
"confab_caps_marker",
)):
train_kwargs[k] = v
net, texts, problems, v_text = get_net_and_corpus(args.input_dir,
args.control_corpus,
args.control_n,
args.lang,
args.reverse,
args.validation_corpus,
args.word_df_threshold,
net_kwargs)
if args.opinion_every:
opinion_args = (args.opinion_every,
args.save + '-%d',
problems)
else:
opinion_args = None
train(net, texts, args.leakage, args.epochs, args.leakage_decay,
args.learn_rate_decay, args.ignore_start, v_text,
args.stop_on_validation_reverse, opinion_args,
args.filename, **train_kwargs)
opinion = opine(net, texts, problems, args.ignore_start)
save_opinions(args.save, problems=problems, **opinion)
main()