-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
lsraarmarch.cpp
836 lines (746 loc) · 28.6 KB
/
lsraarmarch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Register Requirements for ARM and ARM64 common code XX
XX XX
XX This encapsulates common logic for setting register requirements for XX
XX the ARM and ARM64 architectures. XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif
#ifdef TARGET_ARMARCH // This file is ONLY used for ARM and ARM64 architectures
#include "jit.h"
#include "sideeffects.h"
#include "lower.h"
#include "lsra.h"
//------------------------------------------------------------------------
// BuildIndir: Specify register requirements for address expression
// of an indirection operation.
//
// Arguments:
// indirTree - GT_IND, GT_STOREIND or block gentree node
//
// Return Value:
// The number of sources consumed by this node.
//
int LinearScan::BuildIndir(GenTreeIndir* indirTree)
{
// struct typed indirs are expected only on rhs of a block copy,
// but in this case they must be contained.
assert(indirTree->TypeGet() != TYP_STRUCT);
GenTree* addr = indirTree->Addr();
GenTree* index = nullptr;
int cns = 0;
#ifdef TARGET_ARM
// Unaligned loads/stores for floating point values must first be loaded into integer register(s)
if (indirTree->gtFlags & GTF_IND_UNALIGNED)
{
var_types type = TYP_UNDEF;
if (indirTree->OperGet() == GT_STOREIND)
{
type = indirTree->AsStoreInd()->Data()->TypeGet();
}
else if (indirTree->OperGet() == GT_IND)
{
type = indirTree->TypeGet();
}
if (type == TYP_FLOAT)
{
buildInternalIntRegisterDefForNode(indirTree);
}
else if (type == TYP_DOUBLE)
{
buildInternalIntRegisterDefForNode(indirTree);
buildInternalIntRegisterDefForNode(indirTree);
}
}
#endif
if (addr->isContained())
{
if (addr->OperGet() == GT_LEA)
{
GenTreeAddrMode* lea = addr->AsAddrMode();
index = lea->Index();
cns = lea->Offset();
// On ARM we may need a single internal register
// (when both conditions are true then we still only need a single internal register)
if ((index != nullptr) && (cns != 0))
{
// ARM does not support both Index and offset so we need an internal register
buildInternalIntRegisterDefForNode(indirTree);
}
else if (!emitter::emitIns_valid_imm_for_ldst_offset(cns, emitTypeSize(indirTree)))
{
// This offset can't be contained in the ldr/str instruction, so we need an internal register
buildInternalIntRegisterDefForNode(indirTree);
}
}
#ifdef TARGET_ARM64
else if (addr->OperGet() == GT_CLS_VAR_ADDR)
{
// Reserve int to load constant from memory (IF_LARGELDC)
buildInternalIntRegisterDefForNode(indirTree);
}
#endif // TARGET_ARM64
}
#ifdef FEATURE_SIMD
if (indirTree->TypeGet() == TYP_SIMD12)
{
// If indirTree is of TYP_SIMD12, addr is not contained. See comment in LowerIndir().
assert(!addr->isContained());
// Vector3 is read/written as two reads/writes: 8 byte and 4 byte.
// To assemble the vector properly we would need an additional int register
buildInternalIntRegisterDefForNode(indirTree);
}
#endif // FEATURE_SIMD
int srcCount = BuildIndirUses(indirTree);
buildInternalRegisterUses();
if (!indirTree->OperIs(GT_STOREIND, GT_NULLCHECK))
{
BuildDef(indirTree);
}
return srcCount;
}
//------------------------------------------------------------------------
// BuildCall: Set the NodeInfo for a call.
//
// Arguments:
// call - The call node of interest
//
// Return Value:
// The number of sources consumed by this node.
//
int LinearScan::BuildCall(GenTreeCall* call)
{
bool hasMultiRegRetVal = false;
const ReturnTypeDesc* retTypeDesc = nullptr;
regMaskTP dstCandidates = RBM_NONE;
int srcCount = 0;
int dstCount = 0;
if (call->TypeGet() != TYP_VOID)
{
hasMultiRegRetVal = call->HasMultiRegRetVal();
if (hasMultiRegRetVal)
{
// dst count = number of registers in which the value is returned by call
retTypeDesc = call->GetReturnTypeDesc();
dstCount = retTypeDesc->GetReturnRegCount();
}
else
{
dstCount = 1;
}
}
GenTree* ctrlExpr = call->gtControlExpr;
regMaskTP ctrlExprCandidates = RBM_NONE;
if (call->gtCallType == CT_INDIRECT)
{
// either gtControlExpr != null or gtCallAddr != null.
// Both cannot be non-null at the same time.
assert(ctrlExpr == nullptr);
assert(call->gtCallAddr != nullptr);
ctrlExpr = call->gtCallAddr;
}
// set reg requirements on call target represented as control sequence.
if (ctrlExpr != nullptr)
{
// we should never see a gtControlExpr whose type is void.
assert(ctrlExpr->TypeGet() != TYP_VOID);
// In case of fast tail implemented as jmp, make sure that gtControlExpr is
// computed into a register.
if (call->IsFastTailCall())
{
// Fast tail call - make sure that call target is always computed in volatile registers
// that will not be overridden by epilog sequence.
ctrlExprCandidates = allRegs(TYP_INT) & RBM_INT_CALLEE_TRASH & ~RBM_LR;
if (compiler->getNeedsGSSecurityCookie())
{
ctrlExprCandidates &= ~(genRegMask(REG_GSCOOKIE_TMP_0) | genRegMask(REG_GSCOOKIE_TMP_1));
}
assert(ctrlExprCandidates != RBM_NONE);
}
}
else if (call->IsR2ROrVirtualStubRelativeIndir())
{
// For R2R and VSD we have stub address in REG_R2R_INDIRECT_PARAM
// and will load call address into the temp register from this register.
regMaskTP candidates = RBM_NONE;
if (call->IsFastTailCall())
{
candidates = allRegs(TYP_INT) & RBM_INT_CALLEE_TRASH;
assert(candidates != RBM_NONE);
}
buildInternalIntRegisterDefForNode(call, candidates);
}
#ifdef TARGET_ARM
else
{
buildInternalIntRegisterDefForNode(call);
}
if (call->NeedsNullCheck())
{
buildInternalIntRegisterDefForNode(call);
}
#endif // TARGET_ARM
RegisterType registerType = call->TypeGet();
// Set destination candidates for return value of the call.
#ifdef TARGET_ARM
if (call->IsHelperCall(compiler, CORINFO_HELP_INIT_PINVOKE_FRAME))
{
// The ARM CORINFO_HELP_INIT_PINVOKE_FRAME helper uses a custom calling convention that returns with
// TCB in REG_PINVOKE_TCB. fgMorphCall() sets the correct argument registers.
dstCandidates = RBM_PINVOKE_TCB;
}
else
#endif // TARGET_ARM
if (hasMultiRegRetVal)
{
assert(retTypeDesc != nullptr);
dstCandidates = retTypeDesc->GetABIReturnRegs();
}
else if (varTypeUsesFloatArgReg(registerType))
{
dstCandidates = RBM_FLOATRET;
}
else if (registerType == TYP_LONG)
{
dstCandidates = RBM_LNGRET;
}
else
{
dstCandidates = RBM_INTRET;
}
// First, count reg args
// Each register argument corresponds to one source.
bool callHasFloatRegArgs = false;
for (CallArg& arg : call->gtArgs.LateArgs())
{
CallArgABIInformation& abiInfo = arg.AbiInfo;
GenTree* argNode = arg.GetLateNode();
#ifdef DEBUG
regNumber argReg = abiInfo.GetRegNum();
#endif
if (argNode->gtOper == GT_PUTARG_STK)
{
// late arg that is not passed in a register
assert(abiInfo.GetRegNum() == REG_STK);
// These should never be contained.
assert(!argNode->isContained());
continue;
}
// A GT_FIELD_LIST has a TYP_VOID, but is used to represent a multireg struct
if (argNode->OperGet() == GT_FIELD_LIST)
{
assert(argNode->isContained());
// There could be up to 2-4 PUTARG_REGs in the list (3 or 4 can only occur for HFAs)
for (GenTreeFieldList::Use& use : argNode->AsFieldList()->Uses())
{
#ifdef DEBUG
assert(use.GetNode()->OperIs(GT_PUTARG_REG));
assert(use.GetNode()->GetRegNum() == argReg);
// Update argReg for the next putarg_reg (if any)
argReg = genRegArgNext(argReg);
#if defined(TARGET_ARM)
// A double register is modelled as an even-numbered single one
if (use.GetNode()->TypeGet() == TYP_DOUBLE)
{
argReg = genRegArgNext(argReg);
}
#endif // TARGET_ARM
#endif
BuildUse(use.GetNode(), genRegMask(use.GetNode()->GetRegNum()));
srcCount++;
}
}
else if (argNode->OperGet() == GT_PUTARG_SPLIT)
{
unsigned regCount = argNode->AsPutArgSplit()->gtNumRegs;
assert(regCount == abiInfo.NumRegs);
for (unsigned int i = 0; i < regCount; i++)
{
BuildUse(argNode, genRegMask(argNode->AsPutArgSplit()->GetRegNumByIdx(i)), i);
}
srcCount += regCount;
}
else
{
assert(argNode->OperIs(GT_PUTARG_REG));
assert(argNode->GetRegNum() == argReg);
HandleFloatVarArgs(call, argNode, &callHasFloatRegArgs);
#ifdef TARGET_ARM
// The `double` types have been transformed to `long` on armel,
// while the actual long types have been decomposed.
// On ARM we may have bitcasts from DOUBLE to LONG.
if (argNode->TypeGet() == TYP_LONG)
{
assert(argNode->IsMultiRegNode());
BuildUse(argNode, genRegMask(argNode->GetRegNum()), 0);
BuildUse(argNode, genRegMask(genRegArgNext(argNode->GetRegNum())), 1);
srcCount += 2;
}
else
#endif // TARGET_ARM
{
BuildUse(argNode, genRegMask(argNode->GetRegNum()));
srcCount++;
}
}
}
#ifdef DEBUG
// Now, count stack args
// Note that these need to be computed into a register, but then
// they're just stored to the stack - so the reg doesn't
// need to remain live until the call. In fact, it must not
// because the code generator doesn't actually consider it live,
// so it can't be spilled.
for (CallArg& arg : call->gtArgs.Args())
{
GenTree* argNode = arg.GetEarlyNode();
// Skip arguments that have been moved to the Late Arg list
if ((argNode->gtFlags & GTF_LATE_ARG) == 0)
{
// PUTARG_SPLIT nodes must be in the gtCallLateArgs list, since they
// define registers used by the call.
assert(argNode->OperGet() != GT_PUTARG_SPLIT);
if (argNode->gtOper == GT_PUTARG_STK)
{
assert(arg.AbiInfo.GetRegNum() == REG_STK);
}
else
{
assert(!argNode->IsValue() || argNode->IsUnusedValue());
}
}
}
#endif // DEBUG
// If it is a fast tail call, it is already preferenced to use IP0.
// Therefore, no need set src candidates on call tgt again.
if (call->IsVarargs() && callHasFloatRegArgs && !call->IsFastTailCall() && (ctrlExpr != nullptr))
{
NYI_ARM("float reg varargs");
// Don't assign the call target to any of the argument registers because
// we will use them to also pass floating point arguments as required
// by Arm64 ABI.
ctrlExprCandidates = allRegs(TYP_INT) & ~(RBM_ARG_REGS);
}
if (ctrlExpr != nullptr)
{
BuildUse(ctrlExpr, ctrlExprCandidates);
srcCount++;
}
buildInternalRegisterUses();
// Now generate defs and kills.
regMaskTP killMask = getKillSetForCall(call);
BuildDefsWithKills(call, dstCount, dstCandidates, killMask);
return srcCount;
}
//------------------------------------------------------------------------
// BuildPutArgStk: Set the NodeInfo for a GT_PUTARG_STK node
//
// Arguments:
// argNode - a GT_PUTARG_STK node
//
// Return Value:
// The number of sources consumed by this node.
//
// Notes:
// Set the child node(s) to be contained when we have a multireg arg
//
int LinearScan::BuildPutArgStk(GenTreePutArgStk* argNode)
{
assert(argNode->gtOper == GT_PUTARG_STK);
GenTree* putArgChild = argNode->gtGetOp1();
int srcCount = 0;
// Do we have a TYP_STRUCT argument (or a GT_FIELD_LIST), if so it must be a multireg pass-by-value struct
if (putArgChild->TypeIs(TYP_STRUCT) || putArgChild->OperIs(GT_FIELD_LIST))
{
// We will use store instructions that each write a register sized value
if (putArgChild->OperIs(GT_FIELD_LIST))
{
assert(putArgChild->isContained());
// We consume all of the items in the GT_FIELD_LIST
for (GenTreeFieldList::Use& use : putArgChild->AsFieldList()->Uses())
{
BuildUse(use.GetNode());
srcCount++;
#if defined(FEATURE_SIMD)
if (compMacOsArm64Abi())
{
if (use.GetType() == TYP_SIMD12)
{
// Vector3 is read/written as two reads/writes: 8 byte and 4 byte.
// To assemble the vector properly we would need an additional int register.
// The other platforms can write it as 16-byte using 1 write.
buildInternalIntRegisterDefForNode(use.GetNode());
}
}
#endif // FEATURE_SIMD
}
}
else
{
// We can use a ldp/stp sequence so we need two internal registers for ARM64; one for ARM.
buildInternalIntRegisterDefForNode(argNode);
#ifdef TARGET_ARM64
buildInternalIntRegisterDefForNode(argNode);
#endif // TARGET_ARM64
if (putArgChild->OperGet() == GT_OBJ)
{
assert(putArgChild->isContained());
GenTree* objChild = putArgChild->gtGetOp1();
if (objChild->OperGet() == GT_LCL_VAR_ADDR)
{
// We will generate all of the code for the GT_PUTARG_STK, the GT_OBJ and the GT_LCL_VAR_ADDR
// as one contained operation, and there are no source registers.
//
assert(objChild->isContained());
}
else
{
// We will generate all of the code for the GT_PUTARG_STK and its child node
// as one contained operation
//
srcCount = BuildOperandUses(objChild);
}
}
else
{
// No source registers.
putArgChild->OperIs(GT_LCL_VAR);
}
}
}
else
{
assert(!putArgChild->isContained());
srcCount = BuildOperandUses(putArgChild);
#if defined(FEATURE_SIMD)
if (compMacOsArm64Abi() && argNode->GetStackByteSize() == 12)
{
// Vector3 is read/written as two reads/writes: 8 byte and 4 byte.
// To assemble the vector properly we would need an additional int register.
// The other platforms can write it as 16-byte using 1 write.
buildInternalIntRegisterDefForNode(argNode);
}
#endif // FEATURE_SIMD
}
buildInternalRegisterUses();
return srcCount;
}
//------------------------------------------------------------------------
// BuildPutArgSplit: Set the NodeInfo for a GT_PUTARG_SPLIT node
//
// Arguments:
// argNode - a GT_PUTARG_SPLIT node
//
// Return Value:
// The number of sources consumed by this node.
//
// Notes:
// Set the child node(s) to be contained
//
int LinearScan::BuildPutArgSplit(GenTreePutArgSplit* argNode)
{
int srcCount = 0;
assert(argNode->gtOper == GT_PUTARG_SPLIT);
GenTree* putArgChild = argNode->gtGetOp1();
// Registers for split argument corresponds to source
int dstCount = argNode->gtNumRegs;
regNumber argReg = argNode->GetRegNum();
regMaskTP argMask = RBM_NONE;
for (unsigned i = 0; i < argNode->gtNumRegs; i++)
{
regNumber thisArgReg = (regNumber)((unsigned)argReg + i);
argMask |= genRegMask(thisArgReg);
argNode->SetRegNumByIdx(thisArgReg, i);
}
if (putArgChild->OperGet() == GT_FIELD_LIST)
{
// Generated code:
// 1. Consume all of the items in the GT_FIELD_LIST (source)
// 2. Store to target slot and move to target registers (destination) from source
//
unsigned sourceRegCount = 0;
// To avoid redundant moves, have the argument operand computed in the
// register in which the argument is passed to the call.
for (GenTreeFieldList::Use& use : putArgChild->AsFieldList()->Uses())
{
GenTree* node = use.GetNode();
assert(!node->isContained());
// The only multi-reg nodes we should see are OperIsMultiRegOp()
unsigned currentRegCount;
#ifdef TARGET_ARM
if (node->OperIsMultiRegOp())
{
currentRegCount = node->AsMultiRegOp()->GetRegCount();
}
else
#endif // TARGET_ARM
{
assert(!node->IsMultiRegNode());
currentRegCount = 1;
}
// Consume all the registers, setting the appropriate register mask for the ones that
// go into registers.
for (unsigned regIndex = 0; regIndex < currentRegCount; regIndex++)
{
regMaskTP sourceMask = RBM_NONE;
if (sourceRegCount < argNode->gtNumRegs)
{
sourceMask = genRegMask((regNumber)((unsigned)argReg + sourceRegCount));
}
sourceRegCount++;
BuildUse(node, sourceMask, regIndex);
}
}
srcCount += sourceRegCount;
assert(putArgChild->isContained());
}
else
{
assert(putArgChild->TypeGet() == TYP_STRUCT);
assert(putArgChild->OperGet() == GT_OBJ);
// We can use a ldr/str sequence so we need an internal register
buildInternalIntRegisterDefForNode(argNode, allRegs(TYP_INT) & ~argMask);
GenTree* objChild = putArgChild->gtGetOp1();
if (objChild->OperGet() == GT_LCL_VAR_ADDR)
{
// We will generate all of the code for the GT_PUTARG_SPLIT, the GT_OBJ and the GT_LCL_VAR_ADDR
// as one contained operation
//
assert(objChild->isContained());
}
else
{
srcCount = BuildIndirUses(putArgChild->AsIndir());
}
assert(putArgChild->isContained());
}
buildInternalRegisterUses();
BuildDefs(argNode, dstCount, argMask);
return srcCount;
}
//------------------------------------------------------------------------
// BuildBlockStore: Build the RefPositions for a block store node.
//
// Arguments:
// blkNode - The block store node of interest
//
// Return Value:
// The number of sources consumed by this node.
//
int LinearScan::BuildBlockStore(GenTreeBlk* blkNode)
{
GenTree* dstAddr = blkNode->Addr();
GenTree* src = blkNode->Data();
unsigned size = blkNode->Size();
GenTree* srcAddrOrFill = nullptr;
regMaskTP dstAddrRegMask = RBM_NONE;
regMaskTP srcRegMask = RBM_NONE;
regMaskTP sizeRegMask = RBM_NONE;
if (blkNode->OperIsInitBlkOp())
{
if (src->OperIs(GT_INIT_VAL))
{
assert(src->isContained());
src = src->AsUnOp()->gtGetOp1();
}
srcAddrOrFill = src;
switch (blkNode->gtBlkOpKind)
{
case GenTreeBlk::BlkOpKindUnroll:
#ifdef TARGET_ARM64
{
if (dstAddr->isContained())
{
// Since the dstAddr is contained the address will be computed in CodeGen.
// This might require an integer register to store the value.
buildInternalIntRegisterDefForNode(blkNode);
}
const bool isDstRegAddrAlignmentKnown = dstAddr->OperIsLocalAddr();
if (isDstRegAddrAlignmentKnown && (size > FP_REGSIZE_BYTES))
{
// For larger block sizes CodeGen can choose to use 16-byte SIMD instructions.
buildInternalFloatRegisterDefForNode(blkNode, internalFloatRegCandidates());
}
}
#endif // TARGET_ARM64
break;
case GenTreeBlk::BlkOpKindHelper:
assert(!src->isContained());
dstAddrRegMask = RBM_ARG_0;
srcRegMask = RBM_ARG_1;
sizeRegMask = RBM_ARG_2;
break;
default:
unreached();
}
}
else
{
if (src->OperIs(GT_IND))
{
assert(src->isContained());
srcAddrOrFill = src->AsIndir()->Addr();
}
if (blkNode->OperIs(GT_STORE_OBJ))
{
// We don't need to materialize the struct size but we still need
// a temporary register to perform the sequence of loads and stores.
// We can't use the special Write Barrier registers, so exclude them from the mask
regMaskTP internalIntCandidates =
allRegs(TYP_INT) & ~(RBM_WRITE_BARRIER_DST_BYREF | RBM_WRITE_BARRIER_SRC_BYREF);
buildInternalIntRegisterDefForNode(blkNode, internalIntCandidates);
if (size >= 2 * REGSIZE_BYTES)
{
// We will use ldp/stp to reduce code size and improve performance
// so we need to reserve an extra internal register
buildInternalIntRegisterDefForNode(blkNode, internalIntCandidates);
}
// If we have a dest address we want it in RBM_WRITE_BARRIER_DST_BYREF.
dstAddrRegMask = RBM_WRITE_BARRIER_DST_BYREF;
// If we have a source address we want it in REG_WRITE_BARRIER_SRC_BYREF.
// Otherwise, if it is a local, codegen will put its address in REG_WRITE_BARRIER_SRC_BYREF,
// which is killed by a StoreObj (and thus needn't be reserved).
if (srcAddrOrFill != nullptr)
{
assert(!srcAddrOrFill->isContained());
srcRegMask = RBM_WRITE_BARRIER_SRC_BYREF;
}
}
else
{
switch (blkNode->gtBlkOpKind)
{
case GenTreeBlk::BlkOpKindUnroll:
{
buildInternalIntRegisterDefForNode(blkNode);
#ifdef TARGET_ARM64
const bool canUseLoadStorePairIntRegsInstrs = (size >= 2 * REGSIZE_BYTES);
if (canUseLoadStorePairIntRegsInstrs)
{
// CodeGen can use ldp/stp instructions sequence.
buildInternalIntRegisterDefForNode(blkNode);
}
const bool isSrcAddrLocal = src->OperIs(GT_LCL_VAR, GT_LCL_FLD) ||
((srcAddrOrFill != nullptr) && srcAddrOrFill->OperIsLocalAddr());
const bool isDstAddrLocal = dstAddr->OperIsLocalAddr();
// CodeGen can use 16-byte SIMD ldp/stp for larger block sizes
// only when both source and destination base address registers have known alignment.
// This is the case, when both registers are either sp or fp.
bool canUse16ByteWideInstrs = isSrcAddrLocal && isDstAddrLocal && (size >= 2 * FP_REGSIZE_BYTES);
// Note that the SIMD registers allocation is speculative - LSRA doesn't know at this point
// whether CodeGen will use SIMD registers (i.e. if such instruction sequence will be more optimal).
// Therefore, it must allocate an additional integer register anyway.
if (canUse16ByteWideInstrs)
{
buildInternalFloatRegisterDefForNode(blkNode, internalFloatRegCandidates());
buildInternalFloatRegisterDefForNode(blkNode, internalFloatRegCandidates());
}
const bool srcAddrMayNeedReg =
isSrcAddrLocal || ((srcAddrOrFill != nullptr) && srcAddrOrFill->isContained());
const bool dstAddrMayNeedReg = isDstAddrLocal || dstAddr->isContained();
// The following allocates an additional integer register in a case
// when a load instruction and a store instruction cannot be encoded using offset
// from a corresponding base register.
if (srcAddrMayNeedReg && dstAddrMayNeedReg)
{
buildInternalIntRegisterDefForNode(blkNode);
}
#endif
}
break;
case GenTreeBlk::BlkOpKindHelper:
dstAddrRegMask = RBM_ARG_0;
if (srcAddrOrFill != nullptr)
{
assert(!srcAddrOrFill->isContained());
srcRegMask = RBM_ARG_1;
}
sizeRegMask = RBM_ARG_2;
break;
default:
unreached();
}
}
}
if (!blkNode->OperIs(GT_STORE_DYN_BLK) && (sizeRegMask != RBM_NONE))
{
// Reserve a temp register for the block size argument.
buildInternalIntRegisterDefForNode(blkNode, sizeRegMask);
}
int useCount = 0;
if (!dstAddr->isContained())
{
useCount++;
BuildUse(dstAddr, dstAddrRegMask);
}
else if (dstAddr->OperIsAddrMode())
{
useCount += BuildAddrUses(dstAddr->AsAddrMode()->Base());
}
if (srcAddrOrFill != nullptr)
{
if (!srcAddrOrFill->isContained())
{
useCount++;
BuildUse(srcAddrOrFill, srcRegMask);
}
else if (srcAddrOrFill->OperIsAddrMode())
{
useCount += BuildAddrUses(srcAddrOrFill->AsAddrMode()->Base());
}
}
if (blkNode->OperIs(GT_STORE_DYN_BLK))
{
useCount++;
BuildUse(blkNode->AsStoreDynBlk()->gtDynamicSize, sizeRegMask);
}
buildInternalRegisterUses();
regMaskTP killMask = getKillSetForBlockStore(blkNode);
BuildDefsWithKills(blkNode, 0, RBM_NONE, killMask);
return useCount;
}
//------------------------------------------------------------------------
// BuildCast: Set the NodeInfo for a GT_CAST.
//
// Arguments:
// cast - The GT_CAST node
//
// Return Value:
// The number of sources consumed by this node.
//
int LinearScan::BuildCast(GenTreeCast* cast)
{
GenTree* src = cast->gtGetOp1();
const var_types srcType = genActualType(src->TypeGet());
const var_types castType = cast->gtCastType;
#ifdef TARGET_ARM
assert(!varTypeIsLong(srcType) || (src->OperIs(GT_LONG) && src->isContained()));
// Floating point to integer casts requires a temporary register.
if (varTypeIsFloating(srcType) && !varTypeIsFloating(castType))
{
buildInternalFloatRegisterDefForNode(cast, RBM_ALLFLOAT);
setInternalRegsDelayFree = true;
}
#else
// Overflow checking cast from TYP_LONG to TYP_INT requires a temporary register to
// store the min and max immediate values that cannot be encoded in the CMP instruction.
if (cast->gtOverflow() && varTypeIsLong(srcType) && !cast->IsUnsigned() && (castType == TYP_INT))
{
buildInternalIntRegisterDefForNode(cast);
}
#endif
int srcCount = BuildOperandUses(src);
buildInternalRegisterUses();
BuildDef(cast);
return srcCount;
}
#endif // TARGET_ARMARCH