This repository has been archived by the owner on Jan 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathmarvin32.cpp
266 lines (218 loc) · 7.48 KB
/
marvin32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//
// This module contains the routines to implement the Marvin32 checksum function
//
//
#include "common.h"
#include "marvin32.h"
//
// See the symcrypt.h file for documentation on what the various functions do.
//
//
// Round rotation amounts. This array is optimized away by the compiler
// as we inline all our rotations.
//
static const int rotate[4] = {
20, 9, 27, 19,
};
#define ROL32( x, n ) _rotl( (x), (n) )
#define ROR32( x, n ) _rotr( (x), (n) )
#define BLOCK( a, b ) \
{\
b ^= a; a = ROL32( a, rotate[0] );\
a += b; b = ROL32( b, rotate[1] );\
b ^= a; a = ROL32( a, rotate[2] );\
a += b; b = ROL32( b, rotate[3] );\
}
HRESULT
SymCryptMarvin32ExpandSeed(
__out PSYMCRYPT_MARVIN32_EXPANDED_SEED pExpandedSeed,
__in_ecount(cbSeed) PCBYTE pbSeed,
SIZE_T cbSeed )
{
HRESULT retVal = S_OK;
if( cbSeed != SYMCRYPT_MARVIN32_SEED_SIZE )
{
retVal =E_INVALIDARG;
goto cleanup;
}
pExpandedSeed->s[0] = LOAD_LSBFIRST32( pbSeed );
pExpandedSeed->s[1] = LOAD_LSBFIRST32( pbSeed + 4 );
cleanup:
return retVal;
}
VOID
SymCryptMarvin32Init( _Out_ PSYMCRYPT_MARVIN32_STATE pState,
_In_ PCSYMCRYPT_MARVIN32_EXPANDED_SEED pExpandedSeed)
{
pState->chain = *pExpandedSeed;
pState->dataLength = 0;
pState->pSeed = pExpandedSeed;
*(ULONG *) &pState->buffer[4] = 0; // wipe the last 4 bytes of the buffer.
}
VOID
SymCryptMarvin32AppendBlocks(
_Inout_ PSYMCRYPT_MARVIN32_CHAINING_STATE pChain,
_In_reads_( cbData ) PCBYTE pbData,
SIZE_T cbData )
{
ULONG s0 = pChain->s[0];
ULONG s1 = pChain->s[1];
SIZE_T bytesInFirstBlock = cbData & 0xc; // 0, 4, 8, or 12
pbData += bytesInFirstBlock;
cbData -= bytesInFirstBlock;
switch( bytesInFirstBlock )
{
case 0: // This handles the cbData == 0 case too
while( cbData > 0 )
{
pbData += 16;
cbData -= 16;
s0 += LOAD_LSBFIRST32( pbData - 16 );
BLOCK( s0, s1 );
case 12:
s0 += LOAD_LSBFIRST32( pbData - 12 );
BLOCK( s0, s1 );
case 8:
s0 += LOAD_LSBFIRST32( pbData - 8 );
BLOCK( s0, s1 );
case 4:
s0 += LOAD_LSBFIRST32( pbData - 4 );
BLOCK( s0, s1 );
}
}
pChain->s[0] = s0;
pChain->s[1] = s1;
}
VOID
SymCryptMarvin32Append(_Inout_ SYMCRYPT_MARVIN32_STATE * state,
_In_reads_bytes_(cbData) PCBYTE pbData,
SIZE_T cbData)
{
ULONG bytesInBuffer = state->dataLength;
state->dataLength += (ULONG)cbData; // We only keep track of the last 2 bits...
//
// Truncate bytesInBuffer so that we never have an integer overflow.
//
bytesInBuffer &= SYMCRYPT_MARVIN32_INPUT_BLOCK_SIZE - 1;
//
// If previous data in buffer, buffer new input and transform if possible.
//
if (bytesInBuffer > 0)
{
SIZE_T freeInBuffer = SYMCRYPT_MARVIN32_INPUT_BLOCK_SIZE - bytesInBuffer;
if (cbData < freeInBuffer)
{
//
// All the data will fit in the buffer.
// We don't do anything here.
// As cbData < INPUT_BLOCK_SIZE the bulk data processing is skipped,
// and the data will be copied to the buffer at the end
// of this code.
}
else {
//
// Enough data to fill the whole buffer & process it
//
memcpy(&state->buffer[bytesInBuffer], pbData, freeInBuffer);
pbData += freeInBuffer;
cbData -= freeInBuffer;
SymCryptMarvin32AppendBlocks(&state->chain, state->buffer, SYMCRYPT_MARVIN32_INPUT_BLOCK_SIZE);
//
// Set bytesInBuffer to zero to ensure that the trailing data in the
// buffer will be copied to the right location of the buffer below.
//
bytesInBuffer = 0;
}
}
//
// Internal buffer is empty; process all remaining whole blocks in the input
//
if (cbData >= SYMCRYPT_MARVIN32_INPUT_BLOCK_SIZE)
{
SIZE_T cbDataRoundedDown = cbData & ~(SIZE_T)(SYMCRYPT_MARVIN32_INPUT_BLOCK_SIZE - 1);
SymCryptMarvin32AppendBlocks(&state->chain, pbData, cbDataRoundedDown);
pbData += cbDataRoundedDown;
cbData -= cbDataRoundedDown;
}
//
// buffer remaining input if necessary.
//
if (cbData > 0)
{
memcpy(&state->buffer[bytesInBuffer], pbData, cbData);
}
}
VOID
SymCryptMarvin32Result(
_Inout_ PSYMCRYPT_MARVIN32_STATE pState,
_Out_writes_( SYMCRYPT_MARVIN32_RESULT_SIZE ) PBYTE pbResult )
{
SIZE_T bytesInBuffer = ( pState->dataLength) & 0x3;
//
// Wipe four bytes in the buffer.
// Doing this first ensures that this write is aligned when the input was of
// length 0 mod 4.
// The buffer is 8 bytes long, so we never overwrite anything else.
//
*(ULONG *) &pState->buffer[bytesInBuffer] = 0;
//
// The buffer is never completely full, so we can always put the first
// padding byte in.
//
pState->buffer[bytesInBuffer++] = 0x80;
//
// Process the final block
//
SymCryptMarvin32AppendBlocks( &pState->chain, pState->buffer, 8 );
STORE_LSBFIRST32( pbResult , pState->chain.s[0] );
STORE_LSBFIRST32( pbResult + 4, pState->chain.s[1] );
//
// Wipe only those things that we need to wipe.
//
*(ULONG *) &pState->buffer[0] = 0;
pState->dataLength = 0;
pState->chain = *pState->pSeed;
}
VOID
SymCryptMarvin32(
__in PCSYMCRYPT_MARVIN32_EXPANDED_SEED pExpandedSeed,
__in_ecount(cbData) PCBYTE pbData,
SIZE_T cbData,
__out_ecount(SYMCRYPT_MARVIN32_RESULT_SIZE) PBYTE pbResult)
//
// To reduce the per-computation overhead, we have a dedicated code here instead of the whole Init/Append/Result stuff.
//
{
ULONG tmp;
ULONG s0 = pExpandedSeed->s[0];
ULONG s1 = pExpandedSeed->s[1];
while( cbData > 7 )
{
s0 += LOAD_LSBFIRST32( pbData );
BLOCK( s0, s1 );
s0 += LOAD_LSBFIRST32( pbData + 4 );
BLOCK( s0, s1 );
pbData += 8;
cbData -= 8;
}
switch( cbData )
{
default:
case 4: s0 += LOAD_LSBFIRST32( pbData ); BLOCK( s0, s1 ); pbData += 4;
case 0: tmp = 0x80; break;
case 5: s0 += LOAD_LSBFIRST32( pbData ); BLOCK( s0, s1 ); pbData += 4;
case 1: tmp = 0x8000 | pbData[0]; break;
case 6: s0 += LOAD_LSBFIRST32( pbData ); BLOCK( s0, s1 ); pbData += 4;
case 2: tmp = 0x800000 | LOAD_LSBFIRST16( pbData ); break;
case 7: s0 += LOAD_LSBFIRST32( pbData ); BLOCK( s0, s1 ); pbData += 4;
case 3: tmp = LOAD_LSBFIRST16( pbData ) | (pbData[2] << 16) | 0x80000000; break;
}
s0 += tmp;
BLOCK( s0, s1 );
BLOCK( s0, s1 );
STORE_LSBFIRST32( pbResult , s0 );
STORE_LSBFIRST32( pbResult + 4, s1 );
}