generated from dongliangcao/pytorch-framework
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
40 lines (31 loc) · 1.43 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import logging
from os import path as osp
from datasets import build_dataloader, build_dataset
from models import build_model
from utils import get_env_info, get_root_logger, get_time_str
from utils.options import dict2str, parse_options
def test_pipeline(root_path):
# parse options, set distributed setting, set random seed
opt = parse_options(root_path, is_train=False)
# initialize loggers
log_file = osp.join(opt['path']['log'], f"test_{opt['name']}_{get_time_str()}.log")
logger = get_root_logger(log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
# create test dataset and dataloader
test_loaders = []
for _, dataset_opt in sorted(opt['datasets'].items()):
test_set = build_dataset(dataset_opt)
test_loader = build_dataloader(
test_set, dataset_opt, phase='val', num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
logger.info(f"Number of test images in {dataset_opt['name']}: {len(test_set)}")
test_loaders.append(test_loader)
# create model
model = build_model(opt)
for test_loader in test_loaders:
test_set_name = test_loader.dataset.__class__.__name__
logger.info(f'Testing {test_set_name}...')
model.validation(test_loader, tb_logger=None, update=False)
if __name__ == '__main__':
root_path = osp.abspath(osp.join(__file__, osp.pardir))
test_pipeline(root_path)