DNS-STATS Compactor User Guide

DNS-STATS

Version 1.2.3

Table of Contents

1. Overview
1.1. About
1.2. DNS-STATS Compactor
1.3. C-DNS Format
1.3.1. C-DNS versioning
1.3.2. General purpose compression
1.4. Support
2. Installation
2.1. Installing from packages
2.1.1. Ubuntu packages
2.2. Installing from source
2.2.1. Pre-requisites

2.2.2. Optionally building documentation

2.2.3. Building and installing
2.2.4. Building from a git repository
2.2.5. Building from a release tarball
3. Configuring

3.1. compactor Command options

3.2. compactor configuration file
3.2.1. Configuration file location
3.2.2. Configuration file format
3.2.3. Configuration options

3.3. compactor excluded_fields file
3.3.1. Excluded_fields file location
3.3.2. Default configuration
3.3.3. Other configurations

3.4. Configuring compactor daemon startup

3.4.1. Linux with systemd
4. Running compactor

4.1. Stopping and starting compactor daemon

4.1.1. Linux with systemd

4.2. Running compactor from the command line

4.2.1. Capturing network traffic
4.2.2. Capturing DNSTAP traffic
4.2.3. Capturing from PCAP files
4.2.4. Capturing from DNSTAP files
4.2.5. Network capture permissions
4.2.6. DNSTAP capture permissions

© © 0 00 00 N N 9 o oo o g g ok N R R e

W DN DN DN DN DN DN DNDNDDNDDNDDNDNDNDDNDN = =
SO © © 00 0 NN o o U1 U1 U1 U1 WO O O w o

4.2.7. Restarting capture with modified configuration
4.2.8. Configuration file
4.3. compactor log messages
4.4. compactor performance considerations
4.4.1. Threading
5. Running inspector
5.1. inspector default_values file
5.1.1. PCAP generation
5.1.2. Template based text output
5.1.3. Default_values file location
5.1.4. Default configuration
5.1.5. Notes on specific default values
5.1.6. Combining excluded_fields, default_values and pcap-filters
5.2. Templated text output
5.2.1. Template format
5.2.2. Template example
5.3. Pseudo-anonymised output
5.4. Reconstructed PCAP files
5.5. Stored address prefix lengths
5.6. inspector limitations
5.7. compactor/inspector info output
Appendix A: Pseudo-anonymisation
Technical details
Key generation from passphrase
[Pv4 address pseudo-anonymisation
IPv6 address pseudo-anonymisation

EDNS(0) Client subnet pseudo-anonymisation

30
30
31
32
32
34
36
36
37
37
37
38
39
39
39
41
41
42
42
43
43
45
46
46
46
46
47

1. Overview

1.1. About

The DNS-STATS Compactor project is a suite of applications for capturing and working with DNS
traffic to a DNS nameserver. It stores DNS traffic data in Compacted-DNS (C-DNS), a space-efficient
format defined in RFC8618.

The project was initially developed for for ICANN by Sinodun IT, and is now released via DNS-
STATS as an open source project licenced under the Mozilla Public License v2.0.

For more information about DNS-STATS and the Compactor see the DNS-STATS website.

1.2. DNS-STATS Compactor

The DNS-STATS Compactor suite currently comprises two programs:

* compactor. Similar in usage to the well-known tcpdump utility, compactor reads traffic from one
or more network interfaces (or a DNSTAP socket) and writes selected details to C-DNS and PCAP
output files. compactor can also read and convert pre-recorded PCAP files or DNSTAP files.

* inspector. Reconstructs network traffic from C-DNS files produced by compactor. It outputs one
or more PCAP files suitable for direct inspection or input to existing analysis tools. See
Reconstructed PCAP files for limitations on the reconstruction. Alternatively, inspector can be
used to convert C-DNS files to text, based on a user-specified template.

compactor is resource efficient, and can therefore be co-located on a nameserver. Alternatively it
can be run on a standalone server with access to the network traffic to be recorded.

compactor can be configured to produce multiple output files from a single data source. compactor
can optionally compress output files using the popular gzip or xz compression schemes. The output
file types that may be produced are:

* C-DNS. These contain captured DNS traffic, along with some ancillary information, e.g. ICMP
and TCP Reset counts. These files are significantly smaller than PCAP files containing the same
traffic. See C-DNS Format.

 'Ignored' traffic. When capturing from the network, these contain captured non-DNS and
malformed DNS packets in PCAP format. Ignored traffic is not available when capturing from
DNSTAP.

* 'Raw' traffic. When capturing from the network, these contain all packets in the captured traffic
in PCAP format. They are similar to files produced by tcpdump. Raw traffic is not available when
capturing from DNSTAP.

1.3. C-DNS Format

Traditionally server operators and others wishing to record DNS traffic have used network level
capture tools such as tcpdump. While this does produce a complete record of the traffic to and from

https://tools.ietf.org/html/rfc8618
https://www.icann.org
https://www.sinodun.com
https://mozilla.org/MPL/2.0
http://dns-stats.org/
http://www.tcpdump.org
running.pdf#reconstructed_pcap_files
http://www.gzip.org
https://tukaani.org/xz

the server, the resulting output files are large. As the files contain a lot of repeated data (e.g. server
IP and MAC address, common port numbers), they compress well, typically reducing in size by an
order of magnitude. This compression, however, requires notable CPU resources to perform.

The DNS-STATS Compactor focuses on the needs of DNS operators capturing data in environments
where resources (CPU, Upload bandwidth, etc.) are restricted.

The C-DNS file format is designed for efficiently recording DNS traffic information:

* It only captures transport level information likely to be of interest to a DNS operator.

« It is highly flexible and can be configured to capture only specific pieces of data, basic query
and response information, or additional details up to the entire DNS payload. See Configuring.

* It performs DNS-specific compression internally to produce files that are significantly smaller
than raw PCAP files even when full payloads are captured.

1.3.1. C-DNS versioning

From version 1.0 DNS-STATS Compactor writes and reads captured traffic using the 1.0 C-DNS file
format as defined in RFC8618.

Previous versions of the DNS-STATS Compactor implemented earlier, more contstrained versions of
the draft specification. To support backwards compatibility inspector reads:

 Version 1.0 of C-DNS as described in RFC8618 and

* The two older formats (0.2 and 0.5) used by the previous compactor releases (see below for

details of important differences).

It is intended to remain backwards compatible in any future format changes.

1.3.1.1. compactor private version and customisations

compactor 1.0 and later writes C-DNS as described in RFC8618, with the following changes:

» A private version ID of 3 is present.

* Some compactor implementation-specific entries are added to several C-DNS maps (see RFC
section 7.1). They are listed below with their compactor key values in parenthesis.

o CollectionParameters:

= compactor-dns-port (-1): specifies the configured port on which compactor listened for
traffic.

o BlockPreamble:

= compactor-end-time (-1): if the block rolled over (i.e. a new incoming data caused
collection to begin a new block), the timestamp of that new data is recorded as the end
time of the (older) block. If collection from an interface or DNSTAP stops, the time
collection stops is recorded as the end time of the block. No end time is recorded when
reading a PCAP or DNSTAP file.

= compactor-start-time (-2): if the block rolled over (i.e. a new incoming data caused

configuring.pdf#_configuring
https://tools.ietf.org/html/rfc8618
https://tools.ietf.org/html/rfc8618
https://tools.ietf.org/html/rfc8618

collection to begin a new block), the timestamp of that new data is recorded as the start
time of the (newer) block. If collection from an interface or DNSTAP starts, the time
collection starts is recorded as the start time of the block. No start time is recorded when
reading a PCAP or DNSTAP file.

o BlockStatistics:

= compactor-non-dns-packets (-1): count of the number of received packets that could not
be interpreted as DNS packets.

= compactor-out-of-order-packets (-2): count of the number of received packets that were
not received by compactor in strict chronological order.

= compactor-missing-pairs (-3): count of output query/response pairs not written by
compactor because they could not be processed quickly enough.

= compactor-missing-packets (-4): count of output raw PCAP packets not written by
compactor because they could not be processed quickly enough.

= compactor-missing-non-dns (-5): count of output ignored PCAP packets not written by
compactor because they could not be processed quickly enough.

= compactor-packets (-6): total packets received by compactor

= compactor-missing-received (-7): count of packets sniffed from the network not processed
by compactor because they could not be processed quickly enough.

= compactor-discarded-packets (-8): count of packets actively discarded by compactor due
to some processing threshold, e.g. sampling.

= compactor-missing_matcher (-9): count of packets unmatched packets not written by
compactor because they could not be processed for matching quickly enough.

= pcap-packets (-10): informational only report from pcap library - count of packets
received

= pcap-missing-if (-11): informational only report from pcap library - count of packets
dropped at the interface

= pcap-missing-0s (-12): informational only report from pcap library - count of packets
dropped in the kernel

The current release does not support the following facilities defined in the RFC:

o » Malformed packet data recorded directly into C-DNS.

* response-processing-data field

In addition, note that the qr-type field is only present when reading from DNSTAP.

1.3.1.2. Changes in version 1.0 DNS-STATS Compactor

One significant change between the draft C-DNS specification used in earlier version of the DNS-
STATS Compactor and the RFC8618 specification used in version 1.0 and later is that virtually every
piece of data is now optional to capture. In contrast, the earlier versions required a fixed subset of
data to always be captured with the option to include additional data. Whilst adding flexibility to
the format is also adds some complexity in terms of configuration and PCAP regeneration.

Several things should be noted as a result of specification update:

* The default behaviour in terms of which data is collected will not change in 1.0 DNS-STATS
Compactor, all additional sections are still collected.

» The use of include options to capture additional data is deprecated in 1.0 and will be removed
in a future release. Users can instead use the more flexible excluded fields file to better
customise catpured data (see compactor excluded_fields file)

» For 1.0 C-DNS files that capture less than the minimum subset of data defined in the 0.2 and 0.5
versions, PCAP regeneration becomes more complex and requires some default values to
generate sane PCAPS (see inspector default_values file).

An overview of the 1.0 processing flow is shown below.

+
compactor.conf

Interface/PCAP file

1
excludes_fields.conf

COMPACTOR

C-DNS file

1
default_values.conf

PCAP file

INSPECTOR

Template based text output file

1.3.2. General purpose compression

DNS-STATS Compactor provides options to then compress the C-DNS files using general purpose
compression, producing files that are typically less than half the size of compressed raw PCAP files,

while using a fraction of the CPU resources used by compressing raw PCAP.

1.4. Support

Bug reports and feature requests can be submitted via the issue tracker: https://github.com/dns-
stats/compactor/issues

Known Issues are documented at https://github.com/dns-stats/compactor/blob/master/
KNOWN_ISSUES.txt

A mailing list is available for users: https://mm.dns-stats.org/mailman/listinfo/dns-stats-users

2. Installation

2.1. Installing from packages

Binary install packages are available from the dns-stats Launchpad PPA (Personal Package Archive)

* ppa:dns-stats/compactor-bionic for Ubuntu 18.04 LTS 'Bionic Beaver'

* ppa:dns-stats/compactor-focal for Ubuntu 20.04 LTS 'Focal Fossa'

2.1.1. Ubuntu packages

compactor and inspector are supplied in separate packages named dns-stats-compactor and dns-
stats-inspector.

2.1.1.1. Pre-requisites

Both compactor and inspector use libtins for various network related functions. It will be installed
as a pre-requisite package automatically.

2.1.1.2. Installing

You need first to add the DNS-STATS PPA to your system’s Software Sources:

sudo add-apt-repository ppa:dns-stats/compactor-<ubuntu_release>
sudo apt update

You can then install either both of the dns-stats-compactor or dns-stats-inspector packages. Their
pre-requisite packages will be downloaded and installed automatically.

$ sudo apt install dns-stats-compactor
$ sudo apt install dns-stats-inspector

https://github.com/dns-stats/compactor/issues
https://github.com/dns-stats/compactor/issues
https://github.com/dns-stats/compactor/blob/master/KNOWN_ISSUES.txt
https://github.com/dns-stats/compactor/blob/master/KNOWN_ISSUES.txt
https://mm.dns-stats.org/mailman/listinfo/dns-stats-users
https://launchpad.net/~dns-stats
http://releases.ubuntu.com/18.04/
http://releases.ubuntu.com/20.04/
https://libtins.github.io/

2.1.1.3. Post-installation

(r) After installation compactor can be used from the command line, for example for
- ad-hoc captures or converting PCAP capture files.

Whenever the compactor package is installed, the system will attempt to start compactor as a
service.

The first time the compactor package is installed, it installs a default configuration file
/usr/local/etc/dns-stats-compactor/compactor.conf. This default configuration does not specify a
capture interface, so the attempt at starting compactor as a service will fail. Before using compactor
as a service, you need to edit the default configuration and at minimum specify a capture interface.

When the compactor package is upgraded, any running service is stopped for the upgrade and
restarted immediately the upgrade is complete.

2.2. Installing from source

The source code is available at: https://github.com/dns-stats/compactor

Release tarballs are also available on github.

2.2.1. Pre-requisites

To build compactor and inspector from source, the following items are required. They should be
available via standard installation repositories for most platforms. If not, for information on
building pre-requisite items from source, see the documentation for those items.

compactor and inspector are written in C++.
Building them requires a C++ compiler and tool
chain compatible with the 2011 ISO standard,
otherwise C++11.

C++ compiler

pkg-config Used for dependency management.
boost-1log Several libraries from Boost C++ are required.
boost-program-options Depending on your system, it may be possible to

install just the build requirements for individual
libraries, or it may be more convenient to install
all the Boost libraries. NOTE: compactor and
boost-iostreams inspector require Boost 1.54 or later.

boost-system

boost-thread

boost-filesystem
liblzma The compression library from XZ utils.

Library for capturing network traffic

libpcap
http://www.tcpdump.org/.

running.pdf#command-line
https://github.com/dns-stats/compactor
http://www.boost.org
http://tukaani.org/xz/
http://www.tcpdump.org/

Optionally, on systems such as Linux where it’s
available, tcmalloc from the Google performance

libtecmalloc-minimal4 tools gives a notable performance boost over
standard glibc malloc. If not present, the build
will use the standard system malloc.

Networking functions library.
libtins http://libtins.github.io/. See Pre-requisites if
there is no package for your OS.

Cryptography library, used in pseudo-

openssl L
anonymisation. http://www.openssl.org/.

libctemplate Text templating system. https://github.com/
OlafvdSpek/ctemplate.

Libmaxmi nddb MaxMind GeolP reader. https://github.com/
maxmind/libmaxminddb.

orotobuf Google Protocol Buffers library.

https://developers.google.com/protocol-buffers.

2.2.2. Optionally building documentation

The documentation is built using Asciidoctor, version 1.5.0 or later is required (this may require
installation using 'gem install asciidoctor' on some platforms).

Doxygen documentation is also built if Doxygen is installed.
2.2.3. Building and installing

2.2.4. Building from a git repository

To build compactor and inspector, select the desired branch; for example the most recent release
branch/tag or the latest development code which is in 'develop'.

$ git checkout <branch or tag>
$ git submodule update --init

The code uses GNU Autotools. Building and installing requires configuring for the locally installed
version of Autotool, and then follows the usual Autotools process.

$./autogen.sh
$./configure
$ make

$ make install

As usual with Autotools, by default the install is to directories under /usr/local.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://libtins.github.io/
http://www.openssl.org/
https://github.com/OlafvdSpek/ctemplate
https://github.com/OlafvdSpek/ctemplate
https://github.com/maxmind/libmaxminddb
https://github.com/maxmind/libmaxminddb
https://developers.google.com/protocol-buffers
http://asciidoctor.org/
http://www.stack.nl/~dimitri/doxygen/
https://en.wikipedia.org/wiki/GNU_Build_System

2.2.5. Building from a release tarball

To build compactor and inspector, unpack the release tarball.
$ tar -xvzf dns-stats-compactor-<version>.tar.gz
The code uses GNU Autotools. Building and installing follows the usual Autotools process.

$ cd dns-stats-compactor-<version>
$./configure

$ make

$ make install

As usual with Autotools, by default the install is to directories under /usr/local.

3. Configuring

Many compactor settings for capturing and storing traffic can be set using the compactor
configuration file. Additionally, binary package installations of compactor install support for
running the compactor as a daemon, and these typically restrict the system resources available to
compactor .

inspector configuration is discussed in the Running inspector section.

3.1. compactor Command options

Command options are given on the command line.

-h, --help

Print a usage message briefly summarising these command-line options and then exit.

-V, --version

Print the version number of compactor to the standard output stream and then exit.

-r, --report-info [arg]

Report info (config and statistics summary) on exit. arg may be true or 1 to enable promiscuous
mode, false or 0 to disable promiscuous mode. If arg is omitted, it defaults to true.

-D, --relaxed-mode [arg]

Warn (instead of error) if unrecognized command line or config file options are found. arg may
be true or 1 to enable promiscuous mode, false or @ to disable promiscuous mode. If arg is
omitted, it defaults to true.

-1, --list-interfaces

List all network interfaces from which DNS traffic may be captured.

https://en.wikipedia.org/wiki/GNU_Build_System

-c, --configfile [arg]

Read configuration from file arg. If not specified, the default configuration file
/usr/local/etc/dns-stats-compactor/compactor.conf is read if present.

--excludesfile [arg]

Read excludes from file arg. If not specified, the default configuration file /usr/local/etc/dns-
stats-compactor/excluded_fields.conf is read if present.

--debug-dns

Print a summary of each DNS packet to standard output after decoding.

--debug-qr
Print a summary of each query/response pair to standard output after matching query and
response.

3.2. compactor configuration file

3.2.1. Configuration file location

On startup, compactor attempts to read a configuration file. By default this is named compactor.conf,
and is located in a dns-stats-compactor system configuration directory.

If installed from a binary package on Linux, the configuration file will be at /usr/local/etc/dns-
stats-compactor/compactor.conf.

An alternate path for the configuration file can be specified to the compactor using the -c,
--configfile command line option.

3.2.1.1. Default configuration

Both installing via binary packages and installing using the source distribution will install a
compactor.conf configuration file. This needs to be edited to specify an interface to collect from, but
is otherwise configured to collect traffic:

* Recording all DNS additional sections

* Writing C-DNS output compressed with xz compression

* Naming output files named with the date, time, rotating period and capture interface.

* A new output file is commenced every 5 minutes.

» The 'raw' traffic is also recorded to a PCAP output file

» The 'ignored' traffic is also recorded to a PCAP output file

* The output files are stored under /usr/local/var/lib/dns-stats-compactor/dns-stats-compactor

in subdirectories cdns, pcap/raw and pcap/ignored.

All configuration items can also be specified on the command line.

o If an option appears in the configuration file and on the command line, the
command line setting overrides the configuration file.

On the command line, configuration options may be specified in short and long

o forms. In a configuration file, the long form of the option name must be used. So,
for example, to set the snap length to 64, the configuration file entry must read
snaplen=64. s=64 will not be accepted.

3.2.2. Configuration file format

A configuration file is a plain text file with lines in the form option=value. A # character introduces a
comment that spans until the end of the line. To illustrate, here is the default configuration file:

Configuration for DNS-STATS compactor.

Commented out items show the default values.

= o = I =

Network capture options.

Interface on which to capture traffic.
interface=

VLAN IDs to capture. If none specified, all are captured.
vlan-id=

DNS port - only traffic to or from this port is captured.
dns-port=53

Snap length - limit of bytes in package to capture.
snaplen=65535

Filter expression.
filter=

Enable promiscuous mode.
promiscuous-mode=false

DNSTAP capture options.

Unix socket to create for traffic capture.
dnstap-socket=

Attempt to set owner of Unix socket to this user.
dnstap-socket-owner=

Attempt to set group of Unix socket to this group.
dnstap-socket-group=

10

Attempt to set write permission of Unix socket to user only ('user'),
user+group ('group') or all users ('all').
dnstap-socket-write=

E=4

Other capture options.

Optional hints about the server addresses. These do not affect collection,
but are stored in the C-DNS output and may be useful for downstream
analysis. If specified, and capture is from one or more interfaces,

the address must be present on a capture interface.

server-address-hint=

= o = = =

Omit records of this RR type from the content of DNS messages when writing output
(note - the first question is always written). Type name in UPPER CASE e.g. AAAA,
RRSIG.

ignore-rr-type=

Include records of this RR type in the content of DNS messages when writing output
(note - the first question is always written). Type name in UPPER CASE e.g. AAAA,
RRSIG.

accept-rr-type=

Log basic collection stats to syslog every n seconds. @ (default) == never.
log-network-stats-period=0

Log detailed file processing for debugging.
log-file-handling=false

(Sampling is an experimental feature)

Sampling threshold is percentage of traffic dropped above which sampling will be
enabled. Default is 10.

sampling-threshold=10

Sampling rate (1 in n) to be applied if packets dropped internally. @ (default) ==
none.

sampling-rate=0

Apply sampling for n seconds for before re-checking for dropped packets. Default is
100.

sampling-time=100

Output options.

Output file rotation period, in seconds.
rotation-period=300

Maximum Query/Response records in a file block.
max-block-qr-items=5000

Maximum size of uncompressed output before rotation triggered. @=no limit.

11

12

Multiplicative suffices:

k (1024), K (1000)

m (1024*k), M (1000*K)
g (1024*m), G (1000*M)
t (1024*g), T (1000*G)
max-output-size=0

C-DNS output file pattern.

output=
output=/usr/local/var/lib/dns-stats-compactor/cdns/%Y%m%d-%H%M%S_%{rotate-
period}_%{interface}.cdns

Raw PCAP output file pattern.

raw-pcap=
raw-pcap=/usr/local/var/1lib/dns-stats-compactor/pcap/raw/%Y%m%d-%H%M%S_%{rotate-
period}_%{interface}.raw.pcap

Ignored PCAP output file pattern.

ignored-pcap=
ignored-pcap=/usr/local/var/1lib/dns-stats-compactor/pcap/ignored/%Y%m%d-
%H%M%S_%{rotate-period}_%{interface}.ignored.pcap

The use of include lines is deprecated. See the user_guide for more information.
Specify which optional sections to capture. Value may be one of:
query-questions, query-answers, query-authority, query-additional,
response-questions, response-answers, response-authority, response-additional,
query-all, response-all, all.

The 1line may be repeated to request multiple optional sections, for example:
include=query-questions
include=response-answers

If no include is specified then no optional sections are captured.

#
i
#
#
#
i
#
i
i
#
i
include=all

maximum number of compression threads.
max-compression-threads=2

Compress C-DNS using gzip?
gzip-output=false

C-DNS gzip compression level.
gzip-level=6

Compress C-DNS using xz?
xz-output=true

C-DNS xz compression level.
xz-preset=6

Compress PCAP using gzip?

gzip-pcap=false

PCAP gzip compression level.
gzip-level-pcap=6

Compress PCAP using xz?
xz-pcap=false

PCAP xz compression level.
xz-preset-pcap=6

Query matching options.

Seconds to wait for response before timing out query.
query-timeout=5

Microseconds to wait for query arrive after response received.
skew-timeout=10

3.2.3. Configuration options

3.2.3.1. Capture from network

-1, -interface arg

Capture traffic from network interface arg. This argument may be given multiple times to allow
capture for several interfaces in parallel.

-S, --server-address-hint arg

arg is a single IPv4 or IPv6 address for the server. These hints are optional, do not affect capture
in any way, but are stored in C-DNS as a potential aide to post-capture analysis. If capture from
one or more interfaces is specified, then a sanity check is performed to ensure the address is be
present on a system interface; if not, an error is logged, but collection proceeds. This argument
may be given multiple times.

-f, --filter arg

Discard packets not matching the filter expression arg. The filter syntax is described in pcap-
filter(7). Packets are discarded at the point of capture; discarded packets do not appear in any
ignored PCAP output file.

--dns-port arg

Traffic to or from port arg is DNS traffic and should be recorded. Traffic to other ports is
ignored. The default is 53.

-s, --snaplen arg

Capture up to arg bytes per packet. The default is 65535.

-p, --promiscuous-mode [arg]

Put the interface into promiscuous mode. arg may be true or 1 to enable promiscuous mode,

13

false or 0 to disable promiscuous mode. If arg is omitted, it defaults to true. Promiscuous mode
is disabled by default.

-a, --vlan-id arg

ID of VLAN to be captured if on a 802.1Q network. The argument may be given multiple times to
capture from several VLANS. If no vlan-id argument is given, traffic is captured from all VLANSs.

-L, --log-network-stats-period arg

Every arg seconds, log basic statistics on packet collection to the system log. The default value of
0 disables this logging.

-F, --log-file-handling
Log detailed file processing when files are rotated and compressed. This facilitates debugging of
file processing issues and measurement of C-DNS file compression times.

--sampling-threshold arg

A threshold for the percentage of traffic dropped on the internal channels above which sampling
will be enabled (if sampling-rate is greater than 0). The default value is 10.

--sampling-rate arg

The rate (1 in arg packets) to be applied when sampling mode is enabled (this is an experimental
feature). The rate is applied for sampling-time seconds and then sampling is disabled. After this,
depending on the traffic rate, sampling may be enabled again if the drops rise above the
sampling-threshold. The default value of 0 disables this option.

--sampling-time arg
The period of time to apply sampling mode for. To avoid accidentally setting a low value that
could result in instability this must be at least 10s. The default value is 100.

3.2.3.2. Capture from DNSTAP

If compactor has been built with DNSTAP enabled, the following options control capture from
DNSTAP.

--dnstap [arg]

When reading input data from file, treat the data as DNSTAP data not PCAP data if arg is true or
1. The default is false.

--dnstap-socket arg

Capture DNSTAP traffic from Unix socket arg.

--dnstap-socket-owner arg

If specified, compactor will try to set the owner of the DNSTAP socket to arg.

--dnstap-socket-group arg

If specified, compactor will try to set the group of the DNSTAP socket to arg.

14

--dnstap-socket-write arg

If specified, compactor will try to set write permissions on the DNSTAP socket. If arg is owner,
the socket owner will have write permission. If arg is group, the socket owner and group will
have write permission. If arg is all, all users will have write permission. No other values of arg
are permitted.

3.2.3.3. Outputs

-0, --output PATTERN

Use PATTERN as the template for the file path for the C-DNS output files. If no output pattern is
given, no output is written.

-z, --gzip-output [arg]
Compress data in the C-DNS output files using gzip(1) format. arg may be true or 1 to enable

compression, false or @ to disable compression. If arg is omitted, it defaults to true. If
compression is enabled, an extension .gz is added to the output filename.

-y, —-gzip-level [arg]

Compression level to use when producing gzip(1) C-DNS output. arg must be a single digit @ to 9.
If not specified, the default level is 6.

-X, --xz-output [arg]

Compress data in the C-DNS output files using xz(1) format. arg may be true or 1 to enable
compression, false or @ to disable compression. If arg is omitted, it defaults to true. If
compression is enabled, an extension .xz is added to the output filename.

-u, --xz-preset [arg]

Compression preset level to use when producing xz(1) C-DNS output. arg must be a single digit 0
to 9. If not specified, the default level is 6.

--max-compression-threads [arg]

Maximum number of threads to use when compressing. Compression uses one thread per
output file, so this argument gives the number of output files that can be compressed
simultaneously. arg must be 1 or more. If not specified, the default number of threads is 2.

-w, --raw-pcap PATTERN

Use PATTERN as the template for a file path for output of all packets captured via network
capture to file in PCAP format. If no pattern is given, no raw packet output is written. This option
is currently ignored when capturing via DNSTAP.

-m, --ignored-pcap PATTERN
Use PATTERN as the template for a file path for output of all packets captured vai network
capture that were not to the configured DNS ports, or were not validly formed DNS packets. If no
pattern is given, no ignored packet output is written. This option is currently ignored when
capturing via DNSTAP.

-Z, --gzip-pcap [arg]
Compress data in the PCAP output files using gzip(1) format. arg may be true or 1 to enable

15

compression, false or @ to disable compression. If arg is omitted, it defaults to true. If
compression is enabled, an extension .gz is added to the output filename.

-Y, --gzip-level-pcap [arg]
Compression level to use when producing gzip(1) PCAP output. arg must be a single digit 0 to 9. If
not specified, the default level is 6.

-X, --xz-pcap l[arg]
Compress data in the PCAP output files using xz(1) format. arg may be true or 1 to enable
compression, false or 0 to disable compression. If arg is omitted, it defaults to true. If
compression is enabled, an extension .xz is added to the output filename.

-U, --xz-preset-pcap [arg]
Compression preset level to use when producing xz(1) C-DNS output. arg must be a single digit 0
to 9. If not specified, the default level is 6.

-t, --rotation-period SECONDS

Specify the frequency with which all output file path patterns should be re-examined. If the file
path has changed after this period (e.g. because it contains a date/time element which has
changed), the existing output file is closed and a new one opened using the new pattern
expansion. If the file path has not changed, the pattern is re-examined every second until it
changes. Note that file path patterns that do not contain date/time elements will therefore not
trigger file rotation via this mechanism, so using a default file pattern similar that that in the
default configuration file is recommended. The default period is 300 seconds. This may be
combined with maximum output file size rotation, in which case rotation happens when either
condition is met.

-n, --include SECTIONS

Indicate which optional sections should be included in the main output. This argument can be
given multiple times. By default none of these optional sections are included. This option is
deprecated. and will be removed in a future release. It is replaced by the excludesfile option.
See the user guide for more information.

-G, --ignore-opcode OPCODE

DNS messages with this OPCODE should NOT be included in the main output (the DNS message is
discarded). This argument can be given multiple times.

-E, --accept-opcode OPCODE
DNS messages with this OPCODE should be included in the main output (if used, messages with
OPCODES not specified with this option are discarded). This argument can be given multiple
times.

-g, --ignore-rr-type TYPE
Records of this RR type TYPE should NOT be included in DNS messages when they are written to
the main output. Note that the first question is ALWAYS included, but TYPE nominated using the
RR type name (in upper case) will be omitted from any other question and from any Answer,
Authority or Additional section. This argument can be given multiple times.

16

-e, --accept-rr-type TYPE
Records of this RR type TYPE should be included in DNS messages when they are written to the
main output (if used, RR types not specified with this option will be omitted from DNS messages).
Note that the first question is ALWAYS included, but only TYPE nominated using the RR type
name (in upper case) will be included in any other question and in any Answer, Authority or
Additional section. This argument can be given multiple times.

--max-block-items arg

Set the maximum number of query/response items or address event items included in a single
output C-DNS block. arg must be a positive integer. The default maximum size is 5000.

--max-output-size arg

Sets a maximum size for the uncompressed output before an output file rotation is triggered. arg
must be a positive integer, and may optionally be followed by one of the following multiplicative
suffixes: k=1024, K=1000, m=1024*1024, M=1000*1000 and similarly for g, and t. If a file rotation
is triggered, the remaining block and the file postlude will be written, so the final file size will
exceed this setting by a small margin. The default value is 0, which indicates there is no
maximum size. This may be combined with a rotation period, in which case rotation happens
when either condition is met.

--client-address-prefix-ipv4 arg

Set the prefix size (number of address bits stored) for IPv4 client addresses. The client address is
the address of the sender of a query or the receipient of a response. arg must be a positive
integer less than or equal to 32. The default is 32, so the entire IPv4 address is stored.

--client-address-prefix-ipv6 arg

Set the prefix size (number of address bits stored) for IPv6 client addresses. The client address is
the address of the sender of a query or the receipient of a response. arg must be a positive
integer less than or equal to 128. The default is 128, so the entire IPv6 address is stored.

--server-address-prefix-ipv4 arg

Set the prefix size (number of address bits stored) for IPv4 server addresses. The server address
is the address of the recipient of a query or the sender of a response. arg must be a positive
integer less than or equal to 32. The default is 32, so the entire IPv4 address is stored.

--server-address-prefix-ipv6 arg

Set the prefix size (number of address bits stored) for IPv6 server addresses. The server address
is the address of the recipient of a query or the sender of a response. arg must be a positive
integer less than or equal to 128. The default is 128, so the entire IPv6 address is stored.

3.2.3.4. Query/response matching

-(, --query-timeout SECONDS

If no response is found for a query after SECONDS, time out the query. The default timeout is 5
seconds. Fractional values of SECONDS down to milliseconds may be given.

-k, --skew-timeout MICROSECONDS

Due to the vagaries of the network stack, it is possible for responses to be reported before the

17

matching query, even though the query has an earlier timestamp than the response. A response
is not considered to be missing a query until after MICROSECONDS. The default timeout is 10
microseconds.

3.2.3.5. Output file patterns

Output files, C-DNS and PCAP, are named using output file patterns. These are made up from a
directory path and an output filename. So, for example, a PCAP output file might be named
/tmp/pcap/output.pcap. In this example, /tmp/pcap/ is the directory path, and output.pcap is the
output filename.

Output filenames can contain expansion patterns. Expansion patterns are introduced by a %
character, and are of two basic types, time expansions and configuration expansions.

% followed by a single letter Insert a time expansion.
%{name} Insert the current value of the configuration
item name

o
o

Insert a single % in the output filename.

The full list of letters available in the time expansion, and what they expand to, is in the strftime(3)
manual page. Some of the commonly used ones are given below, with expansions for a date and
time of Monday January 16th 2017 at 13:18:05.

By The year, not including the century. 17
Y The year, including the century. 2017
%C The century part of the year. 20
m The month as a decimal number (01-12). 1
%d The day of the month as a decimal number (01-31). 16
gl The day of the week as a decimal number (0-6). Sunday is
0.

W The week number (00-53). 03
%H The hour (24-hour clock) as a decimal number (00-23). 13
M The minute as a decimal number (00-59). 18
%5 The second as a decimal number (00-59). 05

Not all configuration items can be used in a configuration expansion. The items that can be used
are as follows.

%{interfacel} The name of the first configured interface. interface2 etho
gives the second interface, interface3 the third and so on.

%{interface} The names of all configured network interfaces separated eth@-ethl
by -, or dnstap if capturing with DNSTAP.

18

%{rotate-period} The file rotation period used when file names contain 300
time/date elements, in seconds.

%{snaplen} The network capture snap length. 65535

(G4

%{query-timeout} The query timeout, in seconds. If no response to a query
arrives by the timeout, the query is treated as
unanswered.

%{skew-timeout} The skew timeout, in microseconds. If a response arrives 10
without a query, it is held for the timeout period to see if a
query arriving just after matches.

%{promiscuous- Outputs 1 if the network interfaces are in promiscuous true

mode } mode, 0 otherwise.

%{vlan-id1} The ID of the first configured VLAN. vlan-id2 gives the etho
second configured VLAN ID, vlan-id3 the third and so on.

%{vlan-id} The IDs of all configured VLANS separated by -. 10-12

Example:

output=PATTERN

Use PATTERN as the template for the file path for the C-DNS output files. If no output pattern is
given, no output is written.

output=/tmp/cdns/%Y%m%d-%H%M%S_%{rotate_period}_%{interface}.cdns

Using the above date and time, a rotation period of 300s and collecting from interfaces eth® and
eth1 this will write to /tmp/cdns/20170116-131805_300_eth@-eth1.cdns.

3.2.3.6. C-DNS options

include=SECTIONS

Indicate which optional sections should be included in the C-DNS output. This argument can be
given multiple times. If no include is specified then none of these optional sections are included.

The use of include lines is deprecated in v1.0 and will be removed in a future
o major release. The functionality to control what data is captured has moved to the
new excluded_fields file. See compactor excluded_fields file.

Section name Description

query-questions Include second and subsequent QUESTION
sections from queries. The first QUESTION
section is always recorded.

query-answers Include ANSWERS data from queries.
query-authority Include AUTHORITY data from queries.
query-additional Include ADDITIONAL data from queries.

19

Section name Description
query-all Include all sections from queries.

response-questions Include second and subsequent QUESTION
sections from responses. The first QUESTION
section is always recorded.

response-answers Include ANSWERS data from responses.

response-authority Include AUTHORITY data from responses.

response-additional Include ADDITIONAL data from responses.

response-all Include all sections from queries.

all Include all sections from both queries and
responses.

include=all

3.3. compactor excluded_fields file

The excluded_fields file replaces the deprecated include functionality currently found in the
configuration file. By default in v1.0 this file is not used, the deprecated include functionality is still
used for backwards compatibilty.

Users must use either the deprecated include configuration options or the new

o excluded_fields file. They cannot be combined. If the excluded_fields file exists
AND there are include lines in the configuration file (or provided on the command
line) an error will be logged and compactor will exit.

If the excluded_fields file does exists the compactor will act as if include=all was present. The
excluded_fields file then controls what fields are excluded from the C-DNS output. Uncommenting
a field leads to it being omitted from the capture.

The excluded_fields are stored in the C-DNS file as 'StoreageHints' for inspector to
o use when processing C-DNS file, see Sections 6.2.1 and 7.3.1.1.1.1 in RFC8618 for
more details.

3.3.1. Excluded_fields file location

On startup, compactor looks for a excluded_fields file named excluded_fields.conf located in a
dns-stats-compactor system configuration directory. A different file name and location can specified
on the command line by using the compactor --excludesfile option.

3.3.2. Default configuration

By default only a sample excluded_fields file is provided. If installed from a binary package on
Linux, the file will be at /usr/local/etc/dns-stats-compactor/excluded_fields.conf.sample.

20

https://tools.ietf.org/html/rfc8618

This file (with the .sample extension removed) can be used to specify which fields are to be
excluded from the C-DNS capture (assuming the include option is not used). In the sample all the
fields are commented out so all fields would be collected in the C-DNS capture, which gives the
same behaviour as include=all.

The fields are specified in logical groups.

21

22

A list of fields to be omitted from compactor outputs.

Uncomment the field for it to be omitted.
The fields MUST go under the heading as shown

[ip-header]
time-offset
response-delay
client-address
client-port
client-hoplimit
server-address
server-port
gr-transport-flags
qr-type

= o FH o o H o R =

[dns-header]
transaction-id
query-opcode
query-rcode
dns-flags
response-rcode
query-qdcount
query-ancount
query-arcount
query-nscount

= o = o R = R o R

[dns-payload]

query-name

query-class-type

¥ rr-ttl

rr-rdata

query-udp-size

query-opt-rdata

query-edns-version
query-question-sections

query-answer-sections

query-authority-sections

query-additional-sections

response-answer-sections

response-authority-sections
response-additional-sections

[dns-meta-data]
query-size

response-size
qr-sig-flags

[storage-meta-data]
address-events

3.3.3. Other configurations

As previously noted, excluding some data could have implications for PCAP regeneration, see
inspector default_values file. The following is a suggested excludes_fields file which results in the
smallest capture files where the goal is to be able to reasonably reconstruct just queries in a PCAP

(when using the inspector with the -q option). Capturing less data will require populating the PCAP
with default values for some fields.

23

[ip-header]

time-offset
response-delay
client-address
client-port
client-hoplimit
server-address
server-port
gr-transport-flags

T O = R o =

[dns-header]

transaction-id
query-opcode

query-rcode

dns-flags
response-rcode
query-qdcount
query-ancount
query-arcount
query-nscount

[dns-payload]

query-name
query-class-type

rr-ttl

rr-rdata

query-udp-size
query-opt-rdata
query-edns-version
query-question-sections
query-answer-sections
query-authority-sections
query-additional-sections
response-answer-sections
response-authority-sections
response-additional-sections

T o H o R R o R O o o=

[dns-meta-data]
query-size
response-size
qr-sig-flags

[storage-meta-data]
address-events

A more detailed discussion of the issues around C-DNS to PCAP reconstruction can be found in
Section 6.2.1, Section 9 and Appendix D of RFC8618.

24

https://tools.ietf.org/html/rfc8618

3.4. Configuring compactor daemon startup

All binary packages of compactor include startup setup allowing compactor to be run as a daemon,
and possibly started automatically on boot.

These startup setups may also contain settings constraining the compactor’s use of memory and
CPU.

3.4.1. Linux with systemd

By default, Ubuntu 16.04 LTS "Xenial Xerus' and later releases use systemd.

3.4.1.1. Running as a daemon

Binary packages for Ubuntu include a systemd service file with the setup information required to
run compactor as a daemon.

When installing on Debian-based systems such as Ubuntu, installing the package will automatically
enable the service and attempt to start compactor , or restart it if already running.

To enable the service, use the systemctl enable subcommand.
systemctl enable dns-stats-compactor

To start or stop the daemon, or request it reload its configuration, use the appropriate systemctl
subcommand.

3.4.1.2. Changing resource restrictions

This file includes CPUAffinity and MemoryLimit clauses to restrict compactor to particular CPUs and
limit its memory usage. In the installed service file, these are set to CPU 0 only and 1Gb respectively.

[Service]
CPUAffinity=0
MemoryLimit=1G

To override these, use the systemctl edit subcommand to create a service file override unit with an
updated version of the above snippet.

4. Running compactor

4.1. Stopping and starting compactor daemon

If compactor was installed from a binary package, then once the configuration has been set up
compactor can be run as a service or daemon.

25

http://releases.ubuntu.com/16.04/

4.1.1. Linux with systemd

By default, Ubuntu 16.04 LTS "Xenial Xerus' and later releases use systemd.

compactor service is a standard systemd service. It can be manually started, stopped and requested
to reload its configuration.

systemctl start dns-stats-compactor
systemctl stop dns-stats-compactor
systemctl reload dns-stats-compactor

Stopping the service is equivalent to manually interrupting a capture. See Capturing network
traffic.

Requesting the service reloads its configuration is equivalent to a manual request for restarting
capture. See Restarting capture with modified configuration.

4.2. Running compactor from the command line

compactor can be run from the command line to either:

» perform ad-hoc captures from one or more network interfaces, or
* perform ad-hoc captures from DNSTAP, or

» convert already captured PCAP files.

Full details of available command options are in compactor manual page, compactor(l). A
summary is available:

26

http://releases.ubuntu.com/16.04/

$ compactor -h
Usage: compactor [options] [capture-file ...]
Options:

Command options:

-h [--help] show this help message.

-v [--version] show version information.

-c [--configfile] arg configuration file.

--excludesfile arg exclude hints file.

-r [--report-info] [=arg(=1)] report info (config and stats summary) on
exit.

-D [--relaxed-mode] [=arg(=1)] parse command line allowing
unrecognized options but warning.

--debug-dns [=arg(=1)] print DNS packet details.

--debug-qr [=arg(=1)] print Query/Response match details.

-1 [--list-interfaces] list all network interfaces.
Confiquration:

-t [--rotation-period] arg (=300) rotation period for filename based rotation
for all outputs, in seconds.
-q [--query-timeout] arg (=5) timeout period for unanswered queries,
in seconds.
...(rest of output omitted for brevity)...

Specifying a combination of capture files, network interfaces or DNSTAP capture on the command
line is an error.

@ Options --debug-dns and --debug-qr output human-readable summary packet and
- match data as compactor is running. They are a useful way to verify operation.
4.2.1. Capturing network traffic

If at least one network interface is specified and compactor has permission to read from the
network, compactor will start recording network traffic.

For example, to capture traffic on eth@® to output capture.cdns, capturing all DNS sections and
automatically xz compressing the output:

$ compactor -x -o capture.cdns -n all -i eth®

compactor will capture traffic until interrupted by a signal, for example the user typing Control-C. If
the -r option is used then compactor will report summary information on exit (configuration and
basic statistics).

27

If C-DNS compression is enabled, interrupting compactor causes the current

A compression to be aborted (the .raw' uncompressed file is retained on disk). For
this reason you are recommended to have C-DNS output file rotation enabled
when using compression. For more details, see C-DNS output compression.

4.2.2. Capturing DNSTAP traffic

If a DNSTAP Unix socket is specified, and compactor has permission to create the socket, and a local
nameserver is configured to write DNSTAP to that socket, compactor will start recording network
traffic via DNSTAP.

For example, to capture traffic on /run/unbound-dnstap.sock to output capture.cdns, capturing all
DNS sections and automatically xz compressing the output:

$ compactor -x -o capture.cdns -n all --dnstap-socket /run/unbound-dnstap.sock

compactor will capture traffic until interrupted by a signal, for example the user typing Control-C. If
the -r option is used then compactor will report summary information on exit (configuration and
basic statistics).

If C-DNS compression is enabled, interrupting compactor causes the current

A compression to be aborted (the .raw' uncompressed file is retained on disk). For
this reason you are recommended to have C-DNS output file rotation enabled
when using compression. For more details, see C-DNS output compression.

g When capturing traffic over DNSTAP, output of raw or ignored packets to PCAP is
not currently supported. Any related compactor options specified will be ignored.

4.2.3. Capturing from PCAP files

Unless DNSTAP input files are specified, any non-option parameters on the command line are
assumed to be PCAP files to be used for input to compactor . In this case, any capture interface
specified in the configuration file is ignored and the PCAP files used as input.

So, to convert input PCAP file capture.pcap to output capture.cdns, capturing all DNS sections and
automatically xz compressing the output:

$ compactor -x -o capture.cdns -n all capture.pcap
or, using the longer option forms,
$ compactor --xz-output --output capture.cdns --include all capture.pcap

Some command line options take an optional argument. For example, --xz-output can optionally be
followed by an explicit value; if none is present then true is assumed. This does mean that if one of

28

these options is the last option before the PCAP file arguments, the compactor can’t tell that the
PCAP file argument is not a (probably incorrect) value for the option.

$ compactor -o capture.cdns -x capture.pcap
Error: the argument ('capture.pcap') for option
are 'on|off', 'yes|no', '1]|0"' and 'true|false'

--output' 1is invalid. Valid choices

In this case, the option argument must be given explicitly.

$ compactor -o capture.cdns -x true capture.pcap

4.2.4. Capturing from DNSTAP files

If DNSTAP input is specified by using the -T/--dnstap option, any non-option parameters on the
command line are assumed to be DNSTAP files to be used for input to compactor . In this case, any
capture interface specified in the configuration file is ignored and the DNSTAP files used as input.

So, to convert input DNSTAP file capture.dnstap to output capture.cdns, capturing all DNS sections
and automatically xz compressing the output:

$ compactor -T -x -o capture.cdns -n all capture.dnstap
or, using the longer option forms,
$ compactor --dnstap --xz-output --output capture.cdns --include all capture.dnstap

As with other command line options, --dnstap can optionally be followed by an explicit value; if
none is present then true is assumed. This does mean that if it is the last option before the DNSTAP
file arguments, the compactor can’t tell that the DNSTAP file argument is not a (probably incorrect)
value for the option.

$ compactor -o capture.cdns -x -T capture.dnstap
Error: the arqument ('capture.dnstap') for option '--output' is invalid. Valid choices
are 'on|off', 'yes|no', '1|@' and 'true|false'

In this case, the --dnstap argument must be given explicitly.

$ compactor -o capture.cdns -x -T true capture.dnstap

4.2.5. Network capture permissions

If performing an ad-hoc network capture, compactor must have the necessary permissions to allow
it to capture traffic from the specified network ports. These permissions are operating system

29

dependent, and a full discussion is beyond the scope of this guide. The documentation for the
wireshark tool provides a good introduction when discussing permissions for dumpcap. For the
impatient who have the necessary permission, just run compactor as root.

4.2.6. DNSTAP capture permissions

When capturing DNSTAP over a socket, compactor is responsible for the creation of that socket. It
will also be necessary to ensure that the local nameserver has permissions allowing it to write to
the socket.

As a convenience, compactor provides options to set the socket owner, group and write
permissions.

* --dnstap-socket-owner. Set the socket owner to the named user.

* --dnstap-socket-group. Set the socket group to the named group.

* --dnstap-socket-write. Give write permission to owner, owner+group or all.

Obviously, compactor must itself have permission to make the changes.

4.2.7. Restarting capture with modified configuration

If compactor is performing a capture from the network or from DNSTAP, it is possible to modify
settings in the configuration file and have compactor re-read the configuration file. To do so, send
the HUP signal to the compactor process. This will stop the current capture, re-read the configuration
file, and restart capture.

o Any options given on the command line will still be applied for the restarted
capture, and will still over-ride any configuration file value for those options.

The process of stopping the current capture, re-reading configuration and restarting capture will
mean that compactor will miss some traffic. The amount of time taken to stop, write queued data
and then restart is heavily dependent on the load on the network at the time.

If you send a HUP signal to compactor while it is doing a capture from a file rather than a network
capture, the conversion is stopped immediately and compactor exits.

If compression of C-DNS output is enabled, a HUP signal to compactor during a
A capture from a PCAP file have the same effect as interrupting compactor, so the
current C-DNS output is lost. See C-DNS output compression for details.

4.2.8. Configuration file

Remember that when compactor is installed, either using a binary package or using the source
distribution, a configuration file is installed with sample settings. The sample file specifies output
file paths, xz compression on C-DNS output and all sections to be captured.

Any setting given on compactor command line automatically over-rides any value for that setting in
the configuration file.

30

https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges

The -c, --configfile command line option over-rides the default configuration file location. If not
using an alternate configuration file, but specifying all the compactor options from the command
line, it may be wise to explicitly give /dev/null as the configuration file, to ensure that no values
from the installed configuration file are used.

4.3. compactor log messages

compactor logs some messages to the system log. There are error messages, reporting an error
within compactor , and also some informational messages.

Log type Message Comment
ERROR Dropping on these channels: Packets are arriving faster than compactor can
Sniffer Matcher C-DNS process them, so packets are being dropped

internally on the specified channels. More
information is available via the --log-network
-stats-period logging output.

ERROR Dropping on these channels: More ignored packets - that is, packets that do
Ignored-PCAP not appear to be DNS related or which are
malformed - are arriving than can be processed
and recorded to the ignored PCAP output. At
least one has been dropped.

ERROR Dropping on these channels: More input packets are arriving than can be
Raw-PCAP processed and recorded to the raw PCAP output.
At least one has been dropped.
WARNING Sampling mode switched on for Drops on at least one internal channel are
100s with rate of 1 in 10 occurring at a rate higher than specified by the
--sampling-threshold option so sampling is
enabled.
WARNING Sampling mode extended as Drops above the threshold level are still
drops still occurring occurring after the specified --sampling-time
period.
WARNING Sampling mode switched off Drops are now below the sampling threshold

because time limit expired and and so sampling is disabled after the specified
not dropping above threshold time limit.

WARNING Aborting compression of <file> On an interrupt of kill of the process, all in
progress C-DNS file compression is aborted.
However the .raw' (uncompressed) file is left on
disk.

INFO Total packet count, etc. Basic statistics on the ongoing network capture
requested by the --log-network-stats-period
option (see below).

INFO Starting network capture compactor is starting a network capture.

31

Log type Message Comment

INFO Rotating file to <filename> compactor is rotating the current collection file
to the named file.

INFO Re-reading configuration compactor has received a HUP signal and is re-
reading its configuration.

INFO Signal handler: Received - compactor has received a signal.
<signal>
INFO Collection interrupted compactor has received a signal requesting

termination and is stopping collection.

Other error messages are reporting an internal error.

Example statistics produced by enabling the log-network-stats-period option:

*Stats interval: average rate 1896 pps over 1s

LIBPCAP : recv/0S drop/IF drop 1896/ 0/ 0
Sniffer : recv/dropped/queue 1896/ 0/ 1
Matcher : recv/dropped/queue 1896/ 0/ 0
CDNS : recv/dropped/queue 1896/ 0/ 0
CDNS out: writ/% traffic 1896/ 100/

PCAP out: raw drop/ignored drop 0/ 0/

These statistics provide detail about the internal components of compactor that may need to drop
packets under heavy load. If sampling is enabled, an additional line outputs data on sampling:

Sampling: recv/discard/state 1896/ 0/ OFF

Note that the LIBPCAP statistics provided here are information only and may not be reliable,
particularly at high load.

Additional file handling messages can be output by enabling the --log-file-handling option. This
allows detailed debugging of file processing problems and also measurements of file compression
times.

4.4. compactor performance considerations

4.4.1. Threading

compactor is multi-threaded. Packet parsing and query/response matching happens on the main
thread, while separate threads are used for packet capture, to write C-DNS, raw PCAP and ignored
PCAP outputs.

If xz or gzip compression is requested for C-DNS, that compression happens in one or more further
threads as described below. xz or gzip compression in PCAP outputs remains in the PCAP output
thread because the PCAP format is very simple and requires minimal processing overhead. C-DNS,

32

on the other hand, requires non-trivial processing to perform the data de-duplication before
proceeding to general purpose compression.

Data is passed between threads using queues with maximum length. If the rate of incoming data
overwhelms a thread and it can’t keep up, the data is discarded and the discard recorded. As data
rates rise, therefore, the compactor will keep running but more and more queries will not be
processed correctly.

By default, installing compactor via a binary package and running it as a service

o restricts compactor to using just one physical core. Increasing the number of cores
available may, depending on the configuration, increase the maximum throughput
of compactor .

4.4.1.1. C-DNS output compression

The processed used for C-DNS compression is designed for a scenario where compactor is
outputting data to a C-DNS file that is periodically rotated; that is, the existing output file is closed
and a new output file with a distinct name is started. C-DNS output is first written uncompressed to
a raw' temporary output file. When the file is complete, either at the end of input from a PCAP file
being converted, or after a file rotation, a new thread is spawned to compress the temporary output
file to the final compressed C-DNS file. If strong compression is being used, the compression may
not finished before the next output file is ready for compression, so it may be necessary to have two
or more compression threads executing simultaneously to keep up. The maximum number of
compression threads that may be active at any time is set in configuration; if the limit is reached, C-
DNS output blocks until one of the compression threads finishes.

Detailed logs of file processing can be enabled with the --log-file-handling option.

If compactor is interrupted, e.g. by the user typing Control-C or the service being
restarted, the C-DNS output is stopped and all compressing threads are requested
to abort. In this case all incomplete compressed output files are deleted, but the
temporary uncompressed files are retained (alongside the completed compressed

A files). The files will have a .raw extension and can be renamed and compresses
manually. Since these files are uncompressed and could be large, users should
choose how to manage such files.

This behaviour was changed in 1.2.1. Prior to that all in progress output files were
removed on interrupt.

33

If the compactor is listening on an interface where the DNS traffic is very low or
stops for some reason then output files may not get rotated and/or compressed
until a) in the case of the CDNS output another DNS packet is seen or b) in the case
of PCAP output any packet is seen.

Alternatively a C-DNS file rotation can be forced by sending a SIGUSR1 to
compactor, however it is recommended to either

A 1. rely on just the file rotation configuration parameters OR

2. to override the internally triggered rotation with an external signal sent at a
period much shorter then the file-rotation-period (which defaults to 300s)

The second mechanism must be used with care to avoid a race condition because
the internal triggering cannot currently be disabled if the filename contains a
timestamp. The file rotation mechanism is under review and may be further
updated in a coming release.

If compactor is requested to reload its configuration via HUP signal, existing compression threads
are not affected.

Note that if PCAP compression is specified, PCAP files are compressed as they are written (not via a
two-stage processes as above). On interrupt these files are simply closed.

5. Running inspector

inspector is run from the command line to convert C-DNS from one or more C-DNS file to either

¢ PCAP format (the default) or

* text output based on a template file specifying the output for each query/response record.

Each output file may be accompanied by a text info file giving basic information on the C-DNS file
contents (configuration and basic statistics). Alternatively just the info file can be output with no
output files.

o info files are not part of the C-DNS specification. Their contents are specific to this
implementation, and are subject to change.

Bulk processing can be achieved by writing a custom script to use inspector to process the C-DNS
files as needed.

Full details of available command options are in the inspector manual page, inspector(1). A
summary is available:

34

$ inspector -h
Usage: inspector [options] [cdns-file [...]]

Options:
-h [--help] show this help message.
-v [--version] show version information.

--defaultsfile arg (=/usr/local/etc/dns-stats-compactor/dns-stats-
compactor/default_values.conf)
default values file.

-0 [--output] arg output file name.

-F [--output-format] arg output format. 'pcap' (default) or
"template’.

-t [--template] arg name of template to use for template
output.

-V [--value] arg <key>=<value> to substitute in the
template. This argument can be
repeated.

-g [--geoip-db-dir] arg (=/usr/local/var/lib/dns-stats-compactor/GeolP)
path of directory with the GeoIP

databases.

-z [--gzip-output] compress output data using gzip. Adds
.gz extension to output file.

-y [--gzip-level] arg (=6) gzip compression level.

-x [--xz-output] compress output data using xz. Adds .xz
extension to output file.

-u [--xz-preset] arg (=6) xz compression preset level.

-q [--query-only] write only query messages to output.

-r [--report-info] report info (config and stats summary)
on exit.

-D [--relaxed-mode] parse command line allowing
unrecognized options but warning.

-N [--no-output] do not output PCAP or template files,
only ancillary files, e.g. info files,
for each input.

-0 [--no-info] do not output info files.

-X [--excludesfile] generate excluded fields files for each
input.

-S [--stats] report conversion statistics.

-k [--pseudo-anonymisation-key] arg pseudo-anonymisation key.
-P [--pseudo-anonymisation-passphrase] arg

pseudo-anonymisation passphrase.
-p [--pseudo-anonymise] pseudo-anonymise output.
--debug-qr print Query/Response details.

For example, to generate PCAP output corresponding to the DNS traffic in capture.cdns, and
automatically xz compressing the output:

$ inspector -x -0 capture.pcap capture.cdns

35

This generates a compressed PCAP output file, capture.pcap.xz. It also generates capture.pcap.info.

0 The -q option will only write DNS queries to the output PCAP file.

5.1. inspector default_values file

From version 1.0 and later most fields in C-DNS are optional (earlier versions always capture a
minimum set of fields). See the compactor excluded_fields file and the deprecated C-DNS options
setting for compactor for more details. When converting C-DNS to PCAPs or templated text output it
may be necessary or desirable to fill in those omitted fields with default values in a way that was
not necessary with earlier versions. Such fields are specified in the default_values file.

5.1.1. PCAP generation

The PCAP format requires that certain IP, transport information and basic DNS message contents be
present in order for a packet to be considered valid. (Note that only the contents of well-formed
DNS messages are captured in the structured C-DNS format used by the DNS-STATS compactor even
if not all the data is captured. Whilst the 1.0 C-DNS format supports capture of malformed messages
this is not yet implemeted in the DNS-STATS compactor.)

In order for the inspector to always be able to generate sane PCAP files from C-DNS with any set of
excluded_fields a default_values file must be present and must contain the full set of required
default values. If this file is not present or doesn’t contain the required default values inspector will
exit with an error.

o The default values are only used if the data field is not present in a particular
query/response record, they never override data stored in the C-DNS file.

5.1.1.1. Interoperability

A subtlety of the way optionality is specified in the C-DNS format is that even if a field is not
'excluded' in the configuration of the collecting application, it is still not guaranteed to be present.
For example, a collecting application in another deployment scenario may not have access to the
client-hoplimit. Also, in priciple, the presence of a particular field can vary at the individual
query/response record level, not just the file level.

Therefore, for maximum interoperability, the default_values file is required in this release for
PCAP regeneration. Its use means that as long as the file is present, a C-DNS file can be processed in
its entirety to produce output without failure. Otherwise the absence of a particular field on any
single record could cause an error in processing the entire file.

Future releases are likely to include options to allow override of requiring this default_values file
or for such incomplete records to be ignored in file processing.

5.1.1.2. Corner cases

Whilst the use of default_values will produce a 'valid' PCAP file (e.g. one that can be loaded into a
processing application such as Wireshark) this does not guarantee that for all permutations

36

excluded_fields and default_values the packets in the file will form a coherent traffic flow with
fully reconstructed DNS messages. See the following sections for more details on specific default
values and Reconstructed PCAP files for more general issues with PCAP reconstruction.

5.1.2. Template based text output

Since the templated text based output is defined via a template the user should carefully consider
which specific defaults to provide to create the required output. For this reason the default_values
is not a mandatory requirement in this processing flow.

5.1.3. Default_values file location

On startup, inspector looks for a default_values file. By default this is named default_values.conf
and is located in a dns-stats-compactor system configuration directory. A different location can
specified on the command line by using the inspector --defaultsfile option.

If installed from a binary package on Linux, a default values file will be at /usr/local/etc/dns-
stats-compactor/default_values.conf.

5.1.4. Default configuration

The default_values.conf file looks like this

37

A list of default values for fields that are needed but were omitted from the

capture.

The fields MUST go under the headings as shown

[ip-header]
time-offset=0s
response-delay=5ms

client-address=127.0.0.1

client-port=9999
client-hoplimit=64

server-address=127.0.0.2

server-port=53
server-hoplimit=64

qr-transport-flags=ipv4 udp

[dns-header]
transaction-id=0
query-opcode=query
query-rcode=noerror
servfail etc.
dns-flags=

query-do
response-rcode=noerror
servfail etc.

[dns-payload]
query-name=example.com
query-class=in

etc.

query-type=a
rr-tt1=300
query-udp-size=1220
query-edns-version=0

= B HF = O T = o =

<n>s|ms|us|ns

<n>s|ms|us|ns

IPAddress

uint16

uint8

IPAddress

uint16

uint8

(ipv4|ipv6) (udp|tcp) (trailing-data)

uint16

E=

One of query, iquery, status, notify, update or dso
One of any IANA RCODE name, noerror, formerr,

empty or (query|response)-(cd|ad|z|ra|rd|tc]|aa)

One of any IANA RCODE names, noerror, formerr,

As normal text, will be translated to label format

One of any IANA RR CLASSes, internet, in, chaos, ch,

T+ = = =

One of any IANA RR TYPEs, A, NS, CNAME, etc.
uint32
uint16
uint8

The comments on each line show the format of, and in some cases the set of, allowed values. For
example to set a default for dns-flags you could edit the file to say:

dns-flags=query-rd response-ra

5.1.5. Notes on specific default values

Some details on default values and resulting PCAP files:

* dns-flags is the only default that can have no value specified in order to set all flags to 0. It is
also the only default that can have multiple values.

* No defaults are provides for excluded RDATA fields since there is no suitable general default
(the content is type specific). If the RDATA field was excluded on capture the RDATA field will be

38

empty in the resulting PCAP.

* If the time-offset was excluded on capture then using the default value (0s) will result in all the
query (Q/R=0) traffic having the same timestamp. A similar result occurs for response traffic if
the response-delay was excluded on capture.

* Using default timestamps or port numbers can result in traffic flows that are hard to interpret
or appear inconsistent, particularly for TCP traffic.

* A corner case exists where so little data was captured in a record that the inspector cannot
determine if a query and/or response was captured. In this case the inspector defaults to
generating a query.

A more detailed discussion of the issues around C-DNS to PCAP reconstruction can be found in
Section 6.2.1, Section 9 and Appendix D of RFC8618.

5.1.6. Combining excluded_fields, default_values and pcap-filters

Some further subtleties of optionality involve processing of responses. For example, the PCAPs
reconstructed by processing C-DNS files captured with the following exclude_fields:

response-delay
response-rcode
response-answer-sections
response-authority-sections
response-additional-sections

will be different to using the following pcap filter:
filter=dst host <serverIP>

This is because in the first case compactor records that it saw a response, even though it doesn’t
record anything about the response content. It will therefore attempt to reconstruct a response in
the PCAP file using the default_values (unless the -q option is used). In the latter case compactor
never saw the response, records that one was not present and does not attempt to reconstruct one.

5.2. Templated text output

By default, inspector converts input C-DNS to PCAP. Alternatively, though, it can be used to convert
input C-DNS to text output based on a text template file.

5.2.1. Template format

5.2.1.1. Template data items

The text in the template file specifies what should be output for each query/response record in the
C-DNS file. Any items in the template enclosed in double braces, known as template markers e.g.
{{NAME}}, are replaced with a value NAME from the query/response (QR) item. Marker values may also

39

https://tools.ietf.org/html/rfc8618

be specified on the command line.

A full list of query/response template markers is given in the inspector manual page, inspector(1).
The following table gives a selection of common markers:

client_address
client_port
server_address
server_port
client_hoplimit
id

query_name
query_type

query_response_has_que
ry
query_response_has_res
ponse

query_response_query_h
as_question

response_rcode

response_delay_nanosec
s

timestamp_secs
timestamp_microsecs
timestamp_nanosecs
transport_ipvb

transport_tcp

IP address of client as raw bytes, 4 for IPv4, 16 for IPvé6.
Port used by client.

IP address of server as raw bytes, 4 for IPv4, 16 for IPv6.
Port used by server.

Value of query client hoplimit. Blank if no query.

Query ID, or response ID if no query.

QNAME in first Question. Blank if no question.

QTYPE in first Question. Blank if no question.

1 if QR contains a query, otherwise 0.
1 if QR contains a response, otherwise 0.

1 if QR contains a query which has a question, otherwise 0. Blank if no
query.
Value of response RCODE. Blank if no response.

Nano-seconds between query and response timestamps. 0 if no query or
no response.

QR timestamp seconds since epoch.

QR timestamp micro-seconds since epoch.
QR timestamp nano-seconds since epoch.
1 if the IPv4 used, 0 if IPv4.

1 if the transport used was TCP, 0 if UDP.

5.2.1.2. Template marker modifiers

The text substituted into a template marker may be modified by a marker modifier. A marker
modifier is a filter that is applied when the template is expanded and modifies the value of the
marker before it is output. Modifiers are specified by following the marker name with a colon and
the modifier name, e.g. {{client_address:x-ipaddr}}.

There is a selection of marker modifiers useful for C-DNS.

x-cstring Output binary input data using C string style escapes, e.g. Hello, world\n\@. Non-
printable characters without a defined escape are output as \xaa.

X-csvescape Qutput input data escaping for use with CSV as described in RFC4180, e.g. "Hello,

nn nnn

quotes™ .

40

https://tools.ietf.org/html/rfc4180

x-hexstring Qutput binary input data as hex characters. A 0 byte is output as \0, all other values
as \xaa.

x-ipaddr Output text representation of a IPv4 or IPv6 address, depending on whether filter
input was 4 or 16 bytes.

x-ipbaddr Output IPv4 or IPv6 address as the IPv6 printable address representation. IPv4
addresses are output as :: ffff:192.0.2.25.

x-ipbaddr- Qutput IPv4 or IPv6 addresses as a 16 byte binary IPv6 address. IPv4 addresses are
bin output as 0x00000000000000000000ffffc0000219.

x-date Output timestamp in seconds as a date in ISO601 format (YYYY-MM-DD).

x-datetime Qutput timestamp in seconds as a date and time in ISO601 format (YYYY-MM-DD
HH:MM:SS).

5.2.2. Template example

The following template file test.tpl outputs a UTC timestamp, a node identifier (supplied outside C-
DNS), the client address and client port and the query name in one query/response as a single
record in comma-separated value format (CSV).

{{timestamp_secs:x-datetime}},{{node}},{{client_address:x-
ipaddr}},{{client_port}},{{query_name:x-csvescape}}

When run with input C-DNS file input.cdns using this command line, it produces the illustrated
sample output:

$./inspector -o - -F template -t ./test.tpl --value node=42 ./input.cdns

2018-02-07 12:38:10,42,173.253.104.205,37529,www. haokan.party.local

2018-02-07 12:38:10,42,19.134.250.211,36396,"36.5.84.123, 10.121.88.32, 10.121.87.219"
2018-02-07 12:38:10,42,242.68.160.159,50139,n11czxstbgfa.local

5.3. Pseudo-anonymised output

inspector output may be optionally pseudo-anonymised (see Appendix A for a full description).

Briefly, this means that client and server IP addresses in PCAP or templated text output are pseudo-
anonymised, as are all IP addresses in counts of events recorded. IP addresses in data returned
from server to client are not anonymised. Client IP address information sent from the client is
pseudo-anonymised provided it occurs in locations prescribed in DNS standards.

Pseudo-anonymisation of an IP address takes the original address and passes it through an
encoding mechanism to generate a different address. The technical details of the the current
implementation are described in Appendix A.

41

Pseudo-anonymisation is currently an experimental feature. The pseudo-
anonymisation services provided and the details of the mechanism used are
subject to change.

5.4. Reconstructed PCAP files

The PCAP files generated from C-DNS are not an exact reproduction of the original capture, mostly
due to limitations in the C-DNS format itself.

* Link information below the IP layer is not preserved. An Ethernet wrapper is generated for the
packets, but MAC addresses are not preserved.

* Queries and responses over TCP will be generated as a TCP stream, but the stream details will
not be exactly reproduced.

* Some effort is made to ensure that label compression matches the original, but the details of
compression are not recorded in C-DNS and so the match is not perfect. For Knot and NSD
nameservers, the error rate is typically in the region of 0.1%. Mismatches are reported as
'REGENERATION ERRORS' in the info file.

 IP fragmentation is not preserved.

 If the original C-DNS did not record all DNS message sections, these obviously will not be
reproduced.

* Surplus data at the end of a message is not recorded. A count is kept of the number of original
packets with surplus data.

5.5. Stored address prefix lengths

compactor C-DNS output may optionally store IP address prefixes rather than the full address when
record address events or query/responses. Depending on the capture environment, this may serve
to reduce the size of the C-DNS capture.

Separate prefix lengths may be given for client and server addresses. Client addresses are sender
addresses on queries and recipient addresses on responses. Server addresses are the reverse;
recipient addresses on queries and sender addresses on responses.

The prefix is the number of bits of the address to be stored. Seperate prefixes must be specified for
IPv4 addresses and IPv6 addresses. Set prefix lengths using compactor configurations client-
address-prefix-ipv4, client-address-prefix-ipv6, server-address-prefix-ipv4 and server-address-
prefix-ipvé.

When storing the addresses, compactor sets all the address bits after the prefix length to 0, and does
not store trailing 0 bytes in the address. So, for example, specifying an IPv6 prefix of 64 will store
only the first 8 bytes of the address, rather than the full 16 bytes. Not only does this halve the
storage requirement for the address, but it increases the chances of the address being re-used in
subsequent records, as only the prefix bits of the address have to match an already-stored address.

42

https://www.knot-dns.cz/
https://www.nlnetlabs.nl/projects/nsd/

5.6. inspector limitations

The design of C-DNS allows blocks with different storage and collection parameters to be present in
the same C-DNS file. This might arise when two separate C-DNS files are merged.

At the time of writing, no tool exists to do this. inspector has not been tested on such inputs, and
may not exhibit correct behaviour if presented with such a file. At the time of writing, inspector will
only display configuration and storage hints from the first set of parameters in the file.

5.7. compactor/inspector info output

A typical info file is as follows. The report begins with information on compactor configuration
used to capture the data.

CONFIGURATION:
Query timeout : 5 seconds
Skew timeout : 10 microseconds
Snap length : 65535
DNS port 1 53
Max block items : 5000
Promiscuous mode . Off

Capture interfaces
Server addresses

VLAN IDs

Filter

Query options : Extra questions, Answers, Authorities, Additionals
Response options : Extra questions, Answers, Authorities, Additionals
Accept OPCODEs : QUERY, IQUERY, STATUS, NOTIFY, UPDATE, DSO

Accept RR types : A, NS, MD, MF, CNAME, SOA, MB, MG, MR, NULL_R, WKS, PTR,

RINFO, MINFO, MX, TXT, RP, AFSDB, X25, ISDN, RT, NSAP, NSAP_PTR, SIG, KEY, PX, GPOS,
AAAA, LOC, NXT, EID, NIMLOC, SRV, ATMA, NAPTR, KX, CERT, A6, DNAM, SINK, OPT, APL, DS,
SSHFP, IPSECKEY, RRSIG, NSEC, DNSKEY, DHCID, NSEC3, NSEC3PARAM, TLSA, HIP, NINFO,
RKEY, TALINK, CDS, SPF, UINFO, UID, GID, UNSPEC, NID, L32, L64, LP, EU148, EUIb4,
TKEY, TSIG, IXFR, AXFR, MAILB, MAILA, TYPE_ANY, URI, CAA, TA

There follows information on the program used to created the C-DNS and the host on which it was
running.

COLLECTOR:
Collector ID : dns-stats-compactor 1.1.0
Collection host ID : capturehost

After that, the info file gives time information on the capture. The Earliest data and the Latest
data are the timestamps of the earliest and latest query/response pairs in the file. The reported Data
range is the time between Earliest data and Latest data.

43

TIMES:
Collection started : 2020-11-02 17h07m49s632204us UTC

Earliest data : 2020-11-02 17h07m49s632204us UTC
Latest data : 2020-11-02 17h07m59s637124us UTC
Collection ended : 2020-11-02 17h08m23s709295us UTC
Data range : 10s4920us
File duration : 34s77091us

When recording traffic from a network interface, compactor records the time recording started as
the Collection started time. When rolling over to a new file during recording, the timestamp of the
data that causes the rollover is recorded as the Collection started time in the new file. Similarly,
when recording is stopped, the time is recorded as the Collection ended time. When rolling over to
a new file during recording, the timestamp of the data that causes the rollover is recorded as the
Collection ended time in the old file.

If Collection started and Collection ended times are available, the time between them is reported
as the File duration

If C-DNS is produced directly from a PCAP file, compactor cannot know what time the recording
started or ended, so no Collection started or Collection ended times are recorded or reported and
therefore no File durationis reported.

o Recording the Collection started and Collection ended times is a compactor
extension to the C-DNS RFC format.

Then follows some overall statistics on the capture.

STATISTICS:

Total Packets received : 17493
Dropped packets at sniffer (overload) : @
Total Packets processed : 17493
Dropped Matcher messages (overload) : 0
Discarded C-DNS messages (sampling) : @
Processed DNS messages (C-DNS) : 16529
Matched DNS query/response pairs (C-DNS) : 8263
Unmatched DNS queries (C-DNS) : 2
Unmatched DNS responses (C-DNS) : 1
Discarded OPCODE DNS messages (C-DNS) : @
Malformed DNS messages (C-DNS) : 2
Non-DNS packets : 161
Out-of-order DNS query/responses 1 0
Dropped raw PCAP packets (overload) : 0
Dropped non-DNS packets (overload) : @

PCAP STATISTICS:

Packets received (libpcap) : 17493
Packets dropped at i/f (libpcap) : @
Packets dropped in kernel (libpcap) : @

44

o The above counts are based on traffic as reported to compactor by the underlying
libpcap library. When under load, this may not reflect actual traffic.

When processing from capture files, the PCAP STATISTICS will all be 0.

And finally counts of occurrences of various events recorded, and associated addresses.

TCP RESETS:
Count: 1 Address: 3502:e3d3:b836:2ec5:5fTe:98ee:38d8:5cbha

ICMP DEST UNREACHABLE:

Code: 1 Count: 3 Address: 57.98.199.98
Code: 3 Count: 1 Address: 46.119.7.172
Code: 3 Count: 1 Address: 158.99.9.124
Code: 3 Count: 1 Address: 185.158.213.169
Code: 3 Count: 1 Address: 192.168.59.90
Code: 3 Count: 1 Address: 214.214.142.170
Code: 3 Count: 2 Address: 180.243.253.249
Code: 3 Count: 3 Address: 39.161.250.99
Code: 13 Count: 4 Address: 215.101.68.68

ICMPv6 DEST UNREACHABLE:

Code: 1 Count: 4 Address: 3923:96a5:46df:bd71:e9eb:6464:e35:795
Code: 1 Count: 7 Address: 3923:96a5:46df:bd71:d2ea:2443:527f:55df
Code: 4 Count: 3 Address: 210a:3c44:990b:d1f0:4239:bc3f:63e1:240a

REGENERATION ERRORS:
Incorrect wire size: 11 packets

Appendix A: Pseudo-anonymisation

In many jurisdictions IP addresses may, in certain circumstances, be regarded as personal data and
so data containing IP addresses may be subject to data protection laws.

Pseudo-anonymisation means the processing of personal data in such a way that the data can no
longer be attributed to a specific data subject without the use of additional information. However, it
is not intended to preclude any other measures of data protection. We do not attempt to provide an
exhaustive description of pseudo-anonymisation or its limitations here. We recommend that any
organisation using this facility fully understand the implications of sharing pseudo-anonymised
data for their own use case and independently verify this mechanism meets their needs.

This version of the inspector includes an experimental facility which applies pseudo-
anonymisation to some IP addresses in the PCAP and other outputs from inspector. To be exact:

In PCAP output: - Client and server IP addresses in the IP traffic headers. - EDNS(0) Client subnet
information in DNS queries from the client.

45

In .info output: - IP addresses of Address Event Counts. - The Server Addresses field

IP addresses supplied by the server as answers to queries from clients are not pseudo-anonymised.
Note that only DNS messages are re-generated in PCAP files produced by the inspector, no ICMP or
other non-DNS messages are generated.

inspector is only able to pseudo-anonymise IP addresses within DNS messages in records that are
defined in the DNS standards. Any IP addresses included in non-standard records cannot be
reliably distinguished from non-address data, so only addresses in standard locations within
records can be processed.

o This implementation is experimental and subject to change.

Technical details

IP address pseudo-anonymisation is done by encrypting addresses with AES-128 using a 16 byte key.
That key can be supplied directly, via the command line parameter --pseudo-anonymisation-key.
Alternatively, a key can be generated from a passphrase supplied by the --pseudo-anonymisation
-passphrase command line parameter.

Many, but not all, aspects of the currently implemented pseudo-anonymisation are similar to the
ipcipher proposals from PowerDNS. In particular the IPv4 address pseudo-anonymisation is quite
different.

Key generation from passphrase

The process for generating a key from a passphrase is to apply PBKDF2 with SHA1 as the hashing
function, a salt cdnscdnscdnscdns, 50,000 iterations for a 16 byte key. See also RFC2898.

IPv4 address pseudo-anonymisation
IPv4 address pseudo-anonymisation in inspector is done using the following process:

1. Fill a 16 byte buffer with 4 concatenated copies of the IPv4 address (4 bytes each).
2. Apply AES-128 to the buffer using the key.

3. Use the most significant 4 bytes of the result (i.e. the first 4 bytes in the buffer) as the pseudo-
anonymised IPv4 address.

IPv6 address pseudo-anonymisation
IPv6 address pseudo-anonymisation in inspector is done using the following process:

1. Fill a 16 byte buffer with the IPv6 address.
2. Apply AES-128 to the buffer using the key.

3. Use the result as the pseudo-anonymised IPv6 address.

46

https://powerdns.org/ipcipher/
https://powerdns.org
https://en.wikipedia.org/wiki/PBKDF2
https://www.ietf.org/rfc/rfc2898.txt

EDNS(0) Client subnet pseudo-anonymisation

EDNS(0) Client subnet addresses described in RFC7871 are pseudo-anonymised using the following
process:

1. Depending on the address family indicated in the option, construct an IPv4 or IPv6 address with
its significant bits set to the address bits passed in the option and the rest set to 0.

2. Obtain a pseudo-anonymised address based on the constructed address.

3. Set all bits in this address not included in the source prefix length from the option to 0.

4. Replace the option address bits with the significant bits from the pseudo-anonymised address.

47

https://datatracker.ietf.org/doc/rfc7871/

	DNS-STATS Compactor User Guide
	Table of Contents
	1. Overview
	1.1. About
	1.2. DNS-STATS Compactor
	1.3. C-DNS Format
	1.3.1. C-DNS versioning
	1.3.2. General purpose compression

	1.4. Support

	2. Installation
	2.1. Installing from packages
	2.1.1. Ubuntu packages

	2.2. Installing from source
	2.2.1. Pre-requisites
	2.2.2. Optionally building documentation
	2.2.3. Building and installing
	2.2.4. Building from a git repository
	2.2.5. Building from a release tarball

	3. Configuring
	3.1. compactor Command options
	3.2. compactor configuration file
	3.2.1. Configuration file location
	3.2.2. Configuration file format
	3.2.3. Configuration options

	3.3. compactor excluded_fields file
	3.3.1. Excluded_fields file location
	3.3.2. Default configuration
	3.3.3. Other configurations

	3.4. Configuring compactor daemon startup
	3.4.1. Linux with systemd

	4. Running compactor
	4.1. Stopping and starting compactor daemon
	4.1.1. Linux with systemd

	4.2. Running compactor from the command line
	4.2.1. Capturing network traffic
	4.2.2. Capturing DNSTAP traffic
	4.2.3. Capturing from PCAP files
	4.2.4. Capturing from DNSTAP files
	4.2.5. Network capture permissions
	4.2.6. DNSTAP capture permissions
	4.2.7. Restarting capture with modified configuration
	4.2.8. Configuration file

	4.3. compactor log messages
	4.4. compactor performance considerations
	4.4.1. Threading

	5. Running inspector
	5.1. inspector default_values file
	5.1.1. PCAP generation
	5.1.2. Template based text output
	5.1.3. Default_values file location
	5.1.4. Default configuration
	5.1.5. Notes on specific default values
	5.1.6. Combining excluded_fields, default_values and pcap-filters

	5.2. Templated text output
	5.2.1. Template format
	5.2.2. Template example

	5.3. Pseudo-anonymised output
	5.4. Reconstructed PCAP files
	5.5. Stored address prefix lengths
	5.6. inspector limitations
	5.7. compactor/inspector info output

	Appendix A: Pseudo-anonymisation
	Technical details
	Key generation from passphrase
	IPv4 address pseudo-anonymisation
	IPv6 address pseudo-anonymisation
	EDNS(0) Client subnet pseudo-anonymisation

